Article Text

Download PDFPDF
Myofibroblast proliferation, fibrosis, and defective pancreatic repair induced by cyclosporin in rats

Abstract

BACKGROUND Full recovery is always achieved after caerulein induced pancreatitis. Cyclosporin stimulates transforming growth factor β (TGF-β) and may interfere with pancreatic regeneration.

AIM To investigate the effects of cyclosporin after caerulein induced pancreatitis or after caerulein injury.

METHODS Protocol A: rats received cyclosporin daily (20 mg/kg) and caerulein pancreatitis was induced on days 2 and 8. Protocol B: six courses of caerulein pancreatitis were induced at weekly intervals. Cyclosporin was administered on induction and the day before. Rats recovered for two weeks before being killed. Control groups received saline, cyclosporin, or caerulein alone.

RESULTS Protocol A: plasma TGF-β1 and tissue collagenase rose after pancreatitis but decreased towards baseline values on day 15, matching a low collagen content. Morphology disclosed minimal inflammatory infiltration and some interstitial cells immunoreactive for smooth muscle α-actin (SMA). TGF-β1 increased, and remained high in cyclosporin treated groups (cyclosporin alone and cyclosporin plus caerulein). Rats treated with cyclosporin and caerulein showed severe pancreatic weight reduction, abundant inflammatory infiltrates, increased SMA immunoreactive interstitial cells, high collagen content, and delayed collagenase response. No SMA immunoreactive cells were detected in normal rats. Cyclosporin alone also increased SMA immunoreactive cells, despite the absence of inflammatory infiltration and fairly conserved pancreatic structure. Protocol B: the combined pulse treatment induced appreciable collagen deposition and resulted in a smaller pancreas than controls. Morphological examination showed atrophy, fibrosis, fibroblast proliferation, and mononuclear infiltrates.

CONCLUSION Cyclosporin greatly distorts pancreatic repair, transforming caerulein induced pancreatitis into a fibrotic chronic-like disease. The mechanism involves TGF-β, myofibroblasts, and defective collagenase activation.

  • chronic pancreatitis
  • transforming growth factor β
  • caerulein
  • cyclosporin
  • fibrosis
  • myofibroblast
  • Abbreviations used in this paper

    SMA
    smooth muscle α-actin
    TGF
    transforming growth factor
  • Statistics from Altmetric.com

    Request Permissions

    If you wish to reuse any or all of this article please use the link below which will take you to the Copyright Clearance Center’s RightsLink service. You will be able to get a quick price and instant permission to reuse the content in many different ways.

    Linked Articles