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ABSTRACT
P-21 activated kinases (PAKs) are effectors of Rac1/
Cdc42 which coordinate signals from the cell membrane
to the nucleus. Activation of PAKs drive important
signalling pathways including mitogen activated protein
kinase, phospoinositide 3-kinase (PI3K/AKT), NF-κB and
Wnt/β-catenin. Intestinal PAK1 expression increases with
inflammation and malignant transformation, although
the biological relevance of PAKs in the development and
progression of GI disease is only incompletely
understood. This review highlights the importance of
altered PAK activation within GI inflammation,
emphasises its effect on oncogenic signalling and
discusses PAKs as therapeutic targets of
chemoprevention.

INTRODUCTION
Most GI disorders are triggered by three main
denominators: the environment (Western lifestyle),
gut microbiota and genetic susceptibility. Such
genes control various gut functions such as control
of GI inflammation and tumourigenesis. Alterations
in GI homeostasis via disruption of cell polarisa-
tion, proliferation, differentiation and apoptosis are
associated with disease. One, albeit not fully appre-
ciated, group of key regulators of diverse gut func-
tions includes the p-21 activated kinases (PAKs).
PAKs are involved in the innate immune response,
barrier function, maintenance of crypt prolifer-
ation, epithelial cell migration and cell survival.1 2

As PAKs are nodal kinases orchestrating multiple
signalling cascades, they are attractive targets for
therapeutic intervention.3

PAKs are highly conserved serine/threonine kinases
from Saccharomyces cerevisiae to Homo sapiens.4 5

Mammals have six different PAKs which are classified
based on their homology into group I (PAK1–PAK3)
and group II (PAK4–PAK6)1 (table 1). Interestingly,
Drosophila only has three PAKs, in which two are
homologous to group I, and one homologous to
group II.6 Overall, PAK1 and PAK4 are the most
investigated of all PAKs, and have been brought into

focus due to their association with various malignan-
cies.1 PAK overexpression contributes to tumour
invasiveness in uveal melanoma,7 8 neurofibroma-
tosis,9 breast,10 11 cervical,12 colon,13 14 oesopha-
geal,15 gastric,16 17 hepatic,18 lung,19 ovarian,20

prostate21 22 and thyroid cancer.23 PAKs were also
correlated to inflammatory diseases such as rheuma-
toid arthritis24 and asthma.25 Here we highlight the
importance of PAK activation and their role in the
pathogenesis of GI inflammation and malignant
transformation. Our focus is built around PAK1,
although the significance of other PAKs in GI disease
has also been brought into context.

STRUCTURE AND ACTIVATION OF PAKS
The PAK1 gene in H sapiens is located on chromo-
some 11q13.5 and includes 20 different splice var-
iants.26 The largest isoform consists of 14 exons
and encodes 545 amino acids.26 27 It is under tran-
scriptional control of Forkhead Homeobox type O
(FOXO) transcription factors which directly inter-
act with the PAK1 promoter.28 PAK4 is located on
19q13.2, includes 13 splice variants, the largest of
which consists of eight exons, and encodes 591
amino acids.26

Crystal structure revealed three conserved
domains in all group I PAKs. The N-terminus con-
tains a regulatory domain comprising a protein
binding domain (PBD) that overlaps with an auto-
inhibitory domain (AID) and a kinase domain at
the C-terminus (figure 1). The AID provides an
auto-inhibited homodimer where the AID of one
PAK molecule overlaps with the kinase domain of
the other.29 Recently, it was shown that group II
PAKs also contain a sequence-related AID, although
they do not form auto-inhibited homodimers.30

Additionally, proline-rich sequences within the
regulatory domain facilitate interactions with SH3
domain containing adapter molecules (figure 1A).
PAK activation is complex and is initiated via

GTPases, membranous phoshoinositides, adaptor
proteins, growth factors and effectors of intestinal
bacteria such as the enterohaemorrhagic Escherichia
coli O157:H7 type III effector EspG.1 31 32 Rho
GTPases Cdc42/Rac1, as well as Wrch-1,33 directly
bind to group I PAKs within the N-terminal PBD,
also referred as the GTPase binding domain or
Cdc42/Rac1-interactive binding (CRIB).5 Subsequent
auto-phosphorylation at multiple N-terminal residues
releases the dimer and initiates C-terminal kinase
activation (figure 1B). Phosphorylation at residue
Thr-423 is critical for the maintenance and stability
of PAK1 activation.5 Group II PAKs have a higher
specificity to Cdc42 in comparison with Rac1.
Interestingly, PAK4 is constitutively phosphorylated
at Ser474, but only becomes activated upon Cdc42
binding.30 Cdc42 also regulates the cellular localisa-
tion of PAK4.34 35

Table 1 Overview of groups I and II P-21 activated
kinase (PAK) chromosomal location

Gene Chromosomal location

Name Homo sapiens Mus musculus

PAK1 11q13–q14 7 E2
PAK2 3q29 16 B2
PAK3 Xq23 X F2

PAK4 19q13.2 7 A3
PAK5 20p12 2 F3
PAK6 15q14 2 E5
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Selyunin and Alto recently identified an alternative mechan-
ism of group I PAK activation by EspG, a virulence effector
protein from enterohaemorrhagic E coli.32 EspG directly binds
the AID in a region independent from the CRIB domain to
disrupt the homodimer and initiate PAK activation.31

Membranous phosphoinositides such as phosphatidylinositol
4,5-bisphosphate bind to the N-terminal basic region of PAK1
and assist in Rac1-mediated activation.36 Sphingosine disrupts
PAK1’s auto-inhibited state and the enzyme 3-phosphoinositide-
dependent kinase-1 (PDK1) directly phosphorylates PAK1 at
Thr-423.37

Adaptor proteins such as growth factor receptor-bound protein
2 (GRB2),38 PAK-interactive exchange factor (PIX)39 and Nck40

interact with proline-rich motifs of PAK1, thereby recruiting PAK1
dimers to the membrane and increasing their interaction with
GTPases and lipids. Adaptor proteins also influence PAK1’s local-
isation within the cytoplasm or within the nucleus.41 Growth
factors such as epidermal growth factor (EGF) or hepatocyte
growth factor (HGF) also contribute to PAK activation. EGF acti-
vates the protein kinase CK2 which phosphorylates PAK1 at S-223
and contributes to its kinase activation42 whereas HGF initiates
PAK4 kinase activation through a phospoinositide 3-kinase
(PI3K)-AKT2 mechanism which lacks clarity.43 44 The extracellular
matrix glycoprotein vitronectin also activates PAK4, and stimulates
its migration from the cytoplasm to the membrane.45 46

PAK PHYSIOLOGY: KINASE VERSUS SCAFFOLDING
FUNCTIONS
PAKs are predominantly located in the cytoplasm, although they
have roles at the membrane and within the nucleus. PAK1 has
both kinase dependent and independent functions in controlling
cytoskeletal dynamics, cell migration, influencing mitosis and
survival.1

Cytoskeletal dynamics
PAK1’s role in cytoskeletal remodelling includes the phosphoryl-
ation of multiple targets as well as protein–protein interactions
independent of its kinase activity. PAK1 facilitates actin stabilisa-
tion through phosphorylation of myosin light chain (MLC),
LIM kinase, filamin A and dynein light chain 1 (DLC1).47 48

PAK1 contributes to microtubule disassembly via phosphorylat-
ing stathmin (STMN) and tubulin B.48 Lamellipodia formation
and membrane ruffling still occur in PAK1 kinase mutants; thus,
PAK1’s PBD regulates cytoskeletal remodelling in absence of an
activated kinase.49 The role of PAK4 in cytoskeletal reorganisa-
tion has also been demonstrated and is mechanistically different
from group I PAKs. PAK4 does not phosphorylate MLCK;
instead, Cdc42 recruits PAK4 to the Golgi and induces polymer-
isation of actin and the formation of filopodia.50 PAK4 kinase
dead mutants were shown to block filopodia formation;

Figure 1 Structure and activation of P-21 activated kinase (PAK)1. (A) Based on structural and biochemical studies, the mechanism of PAK
activation is conserved in group I. The N-terminal auto-inhibitory domain (AID) keeps PAK1 as a dimer in an auto-inhibited state, blocking substrate
binding through stabilisation of an inactive conformation. The AID partially overlaps with the GTPase binding domain. (B) GTP-bound Rho GTPases
(Cdc42/Rac1) releases PAK1 from its auto-inhibitory conformation, allowing its auto-phosphorylation (Thr-423). Phosphorylation at Thr-423 is critical
for PAK1 activity. Subsequently, additional residues are phosphorylated at N-terminus, blocking auto-inhibition.
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however, stimulation of PAK4 kinase activity was not sufficient
to alter cytoskeletal dynamics in the absence of Cdc42.35

Switching from adherence to migration
Cell migration involves cytoskeletal rearrangements in addition
to turnover of focal adhesion contacts to the stroma at the
leading edge of the cell.51 PAK1 translocation to the membrane
via adaptor proteins influences such turnover of focal adhesion
contacts via phosphorylation of focal adhesion kinase (FAK).52

Wound healing assays have demonstrated that a multiprotein
complex including PAK1, PIX and G-protein receptor kinase
interactor 1 (GIT1) translocates from focal adhesion contacts to
cell-to-cell contacts in order to initiate wound closure and
contact inhibition.53 Intestinal epithelial cells must also balance
signalling between focal adhesion contacts at the stroma and
cell-to-cell contacts such as adherens junctions (AJ). Cadherins
such as E-cadherin are a critical component of AJ, and control
the localisation of the PAK1–PIX–GIT1 complex at focal adhe-
sion contacts. This complex may contribute to a crosstalk
between AJ and focal adhesion contacts.54 PAK1 regulates
E-cadherin transcription, albeit through a separate pathway.
PAK1 phosphorylates and activates Snail, a transcriptional
repressor of E-cadherin.55 PAK4 overexpression leads to the dis-
assembly of stress fibres and focal adhesion contacts thereby
promoting anchorage independent growth.50 HGF induces an
interaction between GRB2-associated binding protein 1 (Gab1)
and PAK4 at the cell periphery, and disruption of the Gab1–
PAK4 complex impeded cell migration and invasion.56 PAK4
activation by vitronectin increases cell motility. Specifically,
PAK4 increases integrin αvβ5 turnover, disrupts actin–integrin
complex and weakens cell adhesion.45

PAK nuclear translocation and its regulatory effects on
transcription
Growth factors such as EGF induce the translocation of PAK1
to the nucleus. PAK1 has three nuclear localisation signals
(NLS1–NLS3).57 Its nuclear translocation requires binding of
DLC1 to activated PAK1.58 Activation of PAK1 facilitates an
interaction between NLS2 and importin to induce its nuclear
translocation.57 PAK4 includes both nuclear localisation and
nuclear export signals. Nuclear import of PAK4 requires an
interaction with α5 importin, and its export is through the
chromosome region maintenance-1 pathway.59 PAK1 has differ-
ential effects on gene transcription. Chromatin immunoprecipi-
tation assays revealed that PAK1 directly binds to and represses
transcription of the nuclear factor of activated T cell (NFAT-1)
gene, as well as upregulating transcription of phosphofructoki-
nase, although indirectly as a component of a transcriptional
complex.57 PAK1 can inhibit and activate transcriptional core-
pressors and transcription factors. The corepressor C-terminal
binding protein 1 is inhibited by PAK1, while SMRT/
HDAC1-associated repressor protein is activated.48 PAK1 also
inhibits FOXO by phosphorylation, which acts as a negative
feedback loop for its own transcription.60 Phosphorylation of
histone H3 by PAK1 may provide an unspecific mechanism by
which PAK1 influences gene transcription.1 48 Both PAK1 and
PAK4 are involved in post-transcriptional regulation; for
example, PAK1 phosphorylates Poly-c-RNA binding protein
(PCBP1) which increases its nuclear localisation and activity.61

PAK4 includes a ribonucleoprotein (RNP) interacting region
which associates with RNPs and RNA binding proteins to regu-
late translation as well as nuclear/cytoplasmic transport.62

Within the nucleus, PAKs have diverse actions in modulating
transcription of multiple targets. However, in the context of GI

disease, the positive and negative cellular consequences of
nuclear PAK have yet to be defined.

Downstream of RAS
Receptor tyrosine kinase activation of RAS leads to the activa-
tion of multiple signalling cascades, including the activation of
PAK1.1 Inversely, PAK1 knockout (KO) mice (which have no
distinct phenotype) display reduced expression of RAS key effec-
tors including ERK and AKT within the colon.63 64 PAK4 KO
mice are embryonically lethal.65 Cellular knockdown of PAK4
also impeded ERK signalling in vitro.66 PAK1 activates mitogen
activated protein kinase (MAPK)/ERK signalling via phosphoryl-
ation of RAF, MEK and ERK, as well as forming protein–
protein interactions in the absence of its kinase activity.67 68

PAK4 is located downstream of AKT;43 however, PAK1 is cen-
tralised between RAS and PI3K/AKT. Within the PI3K/AKT
cascade, PAK1 plays another key role via scaffolding PDK1,
thereby facilitating phosphorylation of AKT.69 In a positive
feedback loop, both PDK1 and AKT phosphorylate and activate
PAK137 70 (figure 2).

Activation of β-catenin
The Wnt/β-catenin pathway is a key process in GI development
and homeostasis.71 Intestinal LGR5+ stem cells use Wnt signal-
ling for continual regeneration.71 72 β-Catenin is the key effector
of the Wnt signal, and regulates transcription of Wnt target
genes when bound to the T cell factor (TCF) or lymphoid
enhancer factor (LEF) family of transcription factors.
Importantly, β-catenin drives canonical Wnt signalling through
Rac1.73 The Rac1 effector, PAK1, directly interacts with
β-catenin and regulates its transcriptional activity through phos-
phorylation at Ser-663 and Ser-67513 74 (figure 3). PAK1 KO
mice in an adenomatous polyposis coli (APC) wildtype back-
ground displayed a marked reduction in nuclear β-catenin
expression.63 PAK4 phosphorylates β-catenin at ser-675, and
colocalises with β-catenin in the nucleus thereby increasing
TCF/LEF transcriptional activation.59 β-Catenin is an effector of
Wnt, and plays a role in cell-to-cell contacts as a complex with
E-cadherin at AJ.75 Inhibition of PAK1 increased the membran-
ous localisation of both β-catenin and E-cadherin,76 thereby
increasing the formation of AJ and reducing intestinal perme-
ability. This further underlines the role of PAK1 in intestinal
integrity and mucosal barrier function.

Upstream of NF-κB
Rac1 is also a key activator of the NF-κB, which orchestrates a
cellular inflammatory response and promotes tumourigen-
esis.77 78 Tumour necrosis factor (TNF)α or interleukin (IL)-1β
stimulate canonical NF-κB signalling, whereas, lipopolysacchar-
ide (LPS) or lymphotoxin B activates the non-canonical pathway
(figure 4).79 LPS has been shown to activate both canonical and
non-canonical NF-κB, albeit through different cascades.80 Both
pathways regulate transcription of multiple genes which activate
or suppress proliferation, apoptosis or cytokine production.
Activation of NF-κB has also been correlated to mucosal barrier
dysfunction81 82 further implicating the importance of NF-κB in
GI homeostasis.

Several studies have investigated the interaction of PAK1 and
NF-κB activation. The AKT-PAK1 cascade is required for NF-κB
signalling in epithelial cells stimulated with HGF, which itself
stimulates PAK1.83 84 Another study implicated that PAK1 regu-
lates multiple NF-κB signalling cascades in fibroblasts.85 PAK1
was also found to regulate non-canonical signalling via activa-
tion of NF-κB interacting kinase (NIK).86 PAK1 activates
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caspase-1 cleavage to promote maturation of IL-1β in LPS sti-
mulated macrophages.87 PAK4 is involved in canonical TNFα/
NF-κB pro-survival signalling in epithelial cells. PAK4 assists
TNFR-associated death domain binding to the TNFR1 complex
via both kinase and scaffold functions.66 Preliminary data indi-
cate that PAK1 plays a critical role in canonical NF-κB signalling
in normal diploid human colon epithelial cells.88 TNFα treat-
ment was sufficient to activate PAK1 through phosphorylation
at Thr-423. PAK1 activation initiated RelA translocation to the
nucleus, and its inhibition via a specific kinase inhibitor, IPA-3,

or via overexpression of a kinase dead PAK1 mutant
(KD-PAK1), inhibited nuclear translocation of RelA.88

PAKS IN GI DISEASES
PAK activation affects NF-κB,16 87 MAPK,89–91 PI3K92 and Wnt/
β-catenin signalling13 linking inflammation and malignant trans-
formation in the gut. Further, PAK signalling promotes epithe-
lial–mesenchymal transition and invasiveness,1 3 93 both of
which are common features of colitis-associated cancer (CAC).
PAK activation has been associated with point mutations and

Figure 2 P-21 activated kinase (PAK)
1 signalling downstream of receptor
tyrosine kinases (RTK). RAS activation
initiates PAK1, RAF/mitogen activated
protein kinase (MAPK) and
phospoinositide 3-kinase (PI3K)/AKT
signalling. Activation of PAK1 by
epidermal growth factor induces its
nuclear translocation. PAK1 activation
by RAS may provide a positive
feedback loop to further activate
MAPK and PI3K. Importantly, PAK1
allocates crosstalk between the PI3K
and MAPK pathways. PAK1 may
induce MEK1/2 or ERK1/2 independent
of RAF, as well as increase PI3K/AKT
signalling by scaffolding PDK1 to
increase phosphorylation of AKT. In
turn, PDK1 may also directly
phosphorylate and activate PAK1.
PAK1 signalling may activate
pro-inflammatory or pro-survival
pathways by facilitating nuclear
activation of NF-κB.

Figure 3 P-21 activated kinase (PAK)1 facilitates Wnt/β-catenin signalling. (A) In the absence of the Wnt ligand, β-catenin signalling is regulated
and β-catenin is degraded through a multiprotein destruction complex. (B) Upon binding of the Wnt ligand to the membrane-bound Frizzled
receptor, β-catenin accumulates in the cytoplasm and translocates to the nucleus. Phosphorylation of β-catenin by PAK1 within the cytoplasm occurs
at two different residues, Ser-663 (red) and Ser-675 (blue), although only Ser-663 is specific to PAK1. As a consequence, β-catenin stability, nuclear
translocation and transcriptional activity are increased. (C) In the absence of PAK1 activity, β-catenin is restored at adherens junction (AJ) where it
anchors E-cadherin to the cytoskeleton through an interaction with α-catenin.
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subsequent gene amplification,43 while mutations in activators
upstream of PAK, such as Rac1/Cdc42, may constitutively acti-
vate PAKs.2 Multiple alterations in PAK signalling were identified
in inflammatory bowel diseases and various GI cancers (table 2).

Infectious diarrhoea
Bacterial enterotoxins use PAK1 as a cellular effector to break
intestinal tight junctions (TJ) and impede epithelial barrier.94

Enteropathogenic E coli (EPEC), a human intestinal attaching
and effacing pathogen, is a major cause of diarrhoea in the
developing world.94–96 EPEC uses a type-three secretion system
to penetrate the epithelial barrier. EPEC injects EPEC-secreted
proteins (EspG or EspF) within enterocytes and causes diar-
rhoea by interfering with intestinal transport and disrupting TJ.
EspG inhibits the anion exchanger downregulated-in-adenoma,
while EspF downregulates the Na+/H+ exchanger (NHE3) and
Na+/glucose transporter (SGLT1) within the gut.94 TJ proteins

such as claudin-1, ZO-1 and occludin are continually main-
tained at cell-to-cell contacts through mechanisms which require
endocytosis and constant remodelling of the cytoskeleton. Both
microtubule disruption and actin depolymerisation impair TJ
thereby disrupting epithelial barrier.94 EspG1 and EspG2
disrupt microtubules as well as impairing protein secretion and
trafficking from the Golgi apparatus. Both groups I and II PAKs
facilitate cytoskeletal rearrangements through modification of
actin. Interestingly, EspG1, directly binds PAK2, disrupts the
PAK auto-inhibited dimer and activates its kinase activity almost
eightfold.31 This suggests that EPEC uses host’s PAK signalling
to induce barrier dysfunction within the gut.97

IBD and CAC
UC is a chronic inflammatory disease of the large bowel.98 Even
though the pathogenesis of UC is multifactorial and complex, it
is widely accepted that chronic inflammation is a precursor to

Figure 4 P-21 activated kinase (PAK)1 in canonical and non-canonical NF-κB signalling. NF-κB signalling regulates transcription of target genes
via two separate cascades known as the canonical and non-canonical pathways. In the canonical pathway, TNFα elicits PAK1 and c-Jun N-terminal
kinase ( JNK) phosphorylation. Subsequent phosphorylation of IKKα/β by JNK initiates phosphorylation of IκB. Consequently, RelA is released from
the IκB complex and translocates into the nucleus. IκB is tagged by ubiquitin for proteasomal degradation. LPS is a known activator of
non-canonical NF-κB signalling. LPS may elicit PAK1 activation through an unknown mechanism. PAK1 phosphorylates and activates NF-κB
interacting kinase (NIK), which activates IKKα. In turn, IKKα phosphorylates p100 and the p100–RelB complex is released. P100 is processed into
p52 which dimerises with RelB and translocates to the nucleus to activate target genes.

Table 2 Effect of PAKs on cell signalling cascades in GI disease

Effect of PAKs on signalling cascades

Disease

Wnt/β-catenin MAPK PI3K mTOR NF-κB

ReferencePAK1 PAK4 PAK1 PAK4 PAK1 PAK4 PAK1 PAK4 PAK1 PAK4

IBD − − − − − − − − + − 76 88 105

Colorectal cancer + − + + + + + − − − 13 14 59 74 76 91 92 152

Gastric cancer + − + + − + − − + − 16 130 137 166

Oesophageal squamous cell carcinoma − − + − − − − − − − 145

Hepatocellular carcinoma − − + − − + − − − − 18 44

(+) investigated; (−) not investigated.
MAPK, mitogen activated protein kinase; PAK, P-21 activated kinase; PI3K, phospoinositide 3-kinase.
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neoplastic transformation in CAC,99 which is multifocal, acceler-
ated and with a mutational sequence that differs from sporadic
colorectal carcinoma (CRC).100 P53 and RAS mutations have
been identified as rather early steps in this process,101 and may
initiate Rac1, NF-κB, PI3K and MAPK signalling. Alternatively,
loss of APC and subsequent activation of nuclear β-catenin sig-
nalling are late events.102

PAK1 has been correlated to a variety of inflammatory dis-
eases such as arthritis, asthma as well as intestinal inflammation
(figure 5).24 103–105 One likely driver of PAK1 activation in IBD
is TNFα.88 PAK1 activation triggers signalling pathways which
drive proliferation, initiate cell migration or block apoptosis,
and may contribute to a loss of intestinal barrier function. PAK1
expression was higher upon disease progression to CAC. A
similar pattern was observed in IL-10 KO mice, a common
model for studying CAC.105 It is tempting to speculate that
PAK1 might be responsible for fuelling various signalling cas-
cades involved in CAC.

The CDH1 locus encoding E-cadherin is one of the barrier
function genes implicated in the pathogenesis of UC.106 As
described above, E-cadherin is important for assembly of AJ.
Inhibition of PAK1 expression by mesalamine increased
cell-to-cell adhesion through membranous restoration of
E-cadherin at AJ.76 Therefore, the effect of mesalamine on
PAK1 inhibition and restoration of intestinal barrier function
may be a critical mechanism of this drug to achieve mucosal
healing in UC.

Colorectal cancer
In comparison with other malignant GI diseases, CRC has the
highest incidence and the third highest mortality rate due to
cancer worldwide.107 Molecular mechanisms of CRC include
chromosomal instability, microsatellite instability or the
CpG-island methylator phenotype, all of which are also found
in CAC.102 108 CAC involves DNA damage (double strand
breaks and point mutations) likely from reactive oxygen species,
and an altered DNA damage response.108 Mutations of APC,
KRAS, BRAF and p53 drive the adenoma-to-carcinoma
sequence in sporadic CRC.109 Carter and colleagues were the

first to report that PAK1 is overexpressed in CRC studying biop-
sies from patients with various stages of disease.110

Immunohistochemical analysis revealed PAK1 expression was
cytoplasmic within the colonic epithelium. Normal epithelial
cells had significantly lower PAK1 staining than neoplastic cells,
and the expression increased with disease progression. PAK1
staining was highest in lymph node metastases and was asso-
ciated with decreased patient survival.110 111 Other investiga-
tions confirmed that both PAK1 and phospho-PAK1 were highly
expressed in human and mouse CRC tissue samples105 111

(figure 5). Advanced CRC showed nuclear PAK1 expression
indicative of poor patient prognosis.91 PAK4 mutations have
also been identified in CRC; however, evidence is lacking to val-
idate its role as driver of tumourigenesis.2 43 A separate study
reported that PAK5 expression increased with CRC progression
and implicated its role in metastasis.112 Considering that PAK1
expression increases throughout the adenoma-to-carcinoma
sequence, it is plausible that PAK1 may be used as a biomarker
for tumour grading. As multiple PAKs are overexpressed in
CRC, future studies should compare the expression patterns
between groups I and II PAKs to identify which PAK will serve
as a better molecular target.

One important step of early colorectal tumourigenesis com-
prises the loss of APC function. Constitutive Wnt signalling pro-
vides high levels of nuclear β-catenin to fuel proliferation within
stem cells of the crypts.71 Loss of APC was shown to induce
crypt proliferation and activate Rac1, while epithelial-specific
deletion of both APC and Rac1 reduced crypt proliferation spe-
cifically through repression of the LGR5+ population.77

Inhibition of Rac1 also impedes RAS-driven proliferation.77

PAK1 as a key effector of Rac1 is expected to be activated upon
loss of APC as well, which may cause amplification of
β-catenin’s transcriptional activity. A functional relation between
PAK1 and β-catenin has been established by inhibiting PAK1 in
tumour cells: small interfering RNA (siPAK1) and KD-PAK1 sig-
nificantly reduced β-catenin and cyclin D1 at the protein level.13

Moreover, PAK1 and β-catenin were found to be associated
together in the cytoplasm.13 113 The functional significance of
this protein interaction was shown by direct phosphorylation of

Figure 5 Immunohistochemical expression of P-21 activated kinase (PAK)1 in intestinal inflammation and colorectal cancer. In humans, PAK1
expression is low within normal colon mucosa. Chronic inflammation of the gut as observed in Crohn’s disease (CD) and UC increases PAK1
expression. PAK1 is highly expressed in both colitis-associated cancer (CAC) and colorectal cancer (CRC). PAK1 expression was also found to be
elevated in an animal model of experimental colitis (DSS-colitis) and AOM/DSS-induced colorectal cancer. IL-10 knockout mice which show
spontaneous enterocolitis progressing to CAC also express higher levels of PAK1. APCmin mice also display high PAK1 levels in adenomas.
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β-catenin by PAK1.13 Activated PAK1 phosphorylates the
C-terminus of β-catenin at Ser-675.13 It is important to note
that β-catenin’s Ser-675 domain is not exclusive to PAK1 since
PAK4114 and PKA115 also phosphorylate the same residue.
Instead, Ser-663 is an exclusive target of PAK1.74 The conse-
quence of multiple phosphorylation sites increases β-catenin sta-
bility, as well as transcriptional activation of Wnt target genes.
Both sites were phosphorylated in CRC tumours and cell lines.
Inhibition of PAK1 with IPA-3, a PAK1 kinase inhibitor, specific-
ally reduced Ser-663 whereas a PI3K inhibitor (LY294002) and
a PKA inhibitor (H-89) had no such effects.74 These findings
established that PAK1 plays a direct role in the activation of
Wnt/β-catenin signalling in colonic epithelial cells.

RAS and RAF mutations lead to MAPK and PI3K pathway
activation, and contribute to the adenoma-to-carcinoma
sequence in CRC.90 116–118 Inhibition of both PAK1 and PAK4
blocks RAS-mediated cell proliferation and survival.14 RAS
mutations hyperactivate PAK1 and initiate PAK1/ERK or PAK1/
PI3K cascades.92 PAK1 knockdown reduced proliferation and
survival, although pharmacological inhibition of ERK or PI3K
alone could not. Interestingly, inhibition of PAK1 and ERK or
PI3K lacked synergism,92 and this line of evidence suggested the
crosstalk of ERK/PI3K observed upon mutated RAS or PI3K
pathways can be effectively inhibited by blocking PAK1 in CRC.

Various studies provide insight concerning PAK1’s role within
CRC establishing that PAK1 activation promotes an invasive
phenotype.92 PAK1 activation was shown to activate signalling
cascades which contribute to invasiveness such as the MAPK
and PI3K cascades.92 Interestingly, it was shown that PAK1
knockdown inhibited both PI3K and MAPK signalling thereby
blocking the secretion of vascular endothelial growth factor
(VEGF), an important mediator of tumour angiogenesis and cell
survival.92 Another potential mechanism of VEGF activation
includes a PAK1-HIF1α cascade.119 Specific inhibition of PAK1
kinase activity reduced colony formation in HCT116 and
SW480 cells, and KD-PAK1 initiated G1 arrest in SW480
cells.13 LoVo cells transfected with shPAK1 also induced a G1
arrest via downregulation of CDK4/6 and cyclin D1. PAK1
knockdown increased apoptosis and was correlated to reduction
in phospho-BAD, Bcl-2, Bcl-xL and XIAP proteins.91

To better understand how PAK1 contributes to ERK-mediated
cell migration and tumour invasion, the regulation of focal
adhesion contacts via ERK phosphorylation of FAK at Ser-910
was studied.111 PAK1 overexpression increased FAK Ser-910
phosphorylation, whereas both KD-PAK1 and siPAK1 had
inhibitory effects. Activation of PAK1 via EGF stimulated phos-
phorylation of PAK1, ERK and FAK. Downregulation of MEK1/
2 with a pharmacological inhibitor, U0126, reduced the migra-
tion and invasion of HCT116 and SW116 cells; however, a
more potent reduction in migration was observed using siPAK1.
These observations imply that targeting PAK1 is a viable option
to decrease the migration and invasion of tumour cells.111

In conclusion, PAK overexpression is associated with
increased cell proliferation and migration thereby promoting
invasion and inhibition of apoptosis in CRC. The effect of
PAK1 overexpression in normal colon epithelium remains to be
investigated in order to explain if activation of oncogenic signal-
ling promotes PAK1 activity or PAK1 itself contributes to neo-
plastic progression.

Peutz–Jeghers syndrome
Hereditary intestinal polyposis or Peutz–Jeghers syndrome (PJS)
is characterised by the development of hamartomatous GI
polyps and predisposes to cancer susceptibility. Germline

mutations in the tumour suppressor gene LKB1 have been
linked to this syndrome.120 LKB1 is downstream of p53 and
may regulate PAK1 activity. Suppression of PAK1 by LKB1 is
mediated by its phosphorylation at Thr-109,121 suggesting the
role of LKB1 in suppression of cell migration through inhibition
of PAK1. LKB1 regulates cellular responses by AMPK/mTOR
signalling, which is reflected in PJS lesions that are associated
with mTOR hyperactivation.122 With recent evidence indicating
the role of PAK1 in mTOR signalling,123 it is imperative to
investigate PAK1 expression in PJS polyps as well as PAK1’s role
in the activation of mTOR in this disease.

PAK1 and gastrin
GI peptide hormones, such as gastrin, play fundamental roles in
gastric acid secretion,124 as well as increasing cell transform-
ation,125 proliferation126 and evasion of apoptosis127 within GI
cancer.128 129 Gastrin is post-translationally modified into ami-
dated gastrin (Gamide) and glycine extended gastrin (Gly-gastrin).
Gastrin KO mice display marked reduction in expression of total
and phosphorylated PAK1 within the colorectal mucosa,63 and
both Gamide and Gly-gastrin increased Rho GTPase activity and
increased the phosphorylation status of PAK1 within a transgenic
mouse gastric mucosal cell line.128 130 131

He et al128 investigated PAK1’s relationship to the Wnt/
β-catenin pathway and established that PAK1 regulates β-catenin
activity downstream of gastrins. PAK1 and β-catenin’s inter-
action was revealed by immunoprecipitation, while immunos-
taining confirmed their colocalisation. Treatment with gastrins
stimulated migration of the complex to the nucleus; however,
β-catenin remained membranous upon treatment with both the
KD-PAK1 mutant and transient silencing of PAK1 (siPAK1).128

Treatment with gastrins reduced the association of β-catenin
with E-cadherin; however, KD-PAK1 abrogated this effect.128

These observations indicated the role of PAK1 in the nuclear
translocation of β-catenin. Gastrin treatment stabilised nuclear
β-catenin, increased the association with the transcription factor
TCF4, and increased the transcription of c-myc and cyclin D1;
however, transfection with KD-PAK1 inhibited this effect.128

Gastrins stimulated migration within a wound-healing assay, and
KD-PAK1 abolished this effect. This study established a novel
role of PAK1 in the activation of Wnt/β-catenin signalling down-
stream of gastrins.

Helicobacter pylori and GC
Helicobacter pylori infection is implicated in chronic gastritis,
duodenal ulcer, gastric metaplasia, gastric MALT lymphoma and
gastric cancer (GC).132 Activation of Rho GTPases Rac1/Cdc42
by H pylori lead to PAK1-mediated nuclear responses, repre-
senting an early event in epithelial colonisation by this strain.133

Moreover, activation of the NF-κB pro-inflammatory pathway
by H pylori involved direct interaction of PAK1 and NIK.86

Worldwide GC has the fourth highest cancer-associated mor-
tality rate.134 Early GC is asymptomatic, and difficult to identify
by endoscopy. Thus, patients are often diagnosed at late tumour
stage and with a poor survival.134 PAK mRNA and protein
expression were found to be upregulated in GC cancer
cells.135 136 PAK4 and PAK1 were correlated with increased
tumour growth, invasion, metastasis and poor prognosis in GC
patients.16 136–138 Dysregulation of transcription growth
factor-β (TGF-β) signalling plays a key role in GI inflammation
and cancer.139 TGF-β transmits signals to the nucleus via a
network of multiprotein complexes using the SMA and mothers
against decapentaplegic (MAD; SMAD) family of proteins. Loss
of SMAD was correlated to GC susceptibility,140 and HGF
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activation of PAK4 induced SMAD2 phosphorylation and pro-
teasomal degradation.17 One mechanism in which PAK4 may
promote GC metastasis is through the modification of micro-
tubule homeostasis proteins such as superior cervical ganglia 10
(SCG10). PAK4 phosphorylates SCG10 and initiates cell migra-
tion and invasion in vivo.141

PAK1 knockdown in a GC xenograft model reduced tumour
size.16 Stable and transient knockdown of PAK1 within GC cell
lines (BGC823 and ACS) induced G2 cell cycle arrest, reduced
proliferation and inhibited anchorage independent cell
growth.16 Overexpression of the catalytically active (CA-PAK1)
mutant enhanced the expression of cyclin B1, a critical compo-
nent of the G2/M transition of the cell cycle, whereas PAK1
inhibition decreased the transcription of cyclin B1. PAK1 defi-
cient clones had reduced activity of NF-κB, and pharmaco-
logical inhibition of NF-κB reduced the activity of cyclin B1.
Interference with NF-κB activity, through a mutant IκBα vector,
interfered with CA-PAK1-induced upregulation of cyclin B1.
Liu et al16 concluded that overexpression of PAK1 in GC may
regulate proliferation through an increase in cyclin B1 via
NF-κB. A recent report suggested that PAK1 overexpression in
GC activates the ERK and c-Jun N-terminal kinase (JNK) path-
ways, thereby playing a role in the metastatic phenotype.137

These studies implicate both PAK1 and PAK4 in GC. PAK4
modification of SMAD in the TGFβ pathway and PAK1’s role
within the NF-κB, ERK and JNK pathways contribute to prolif-
eration, invasion and metastasis of GC.

Hepatocellular carcinoma
Similar to CRC, overexpression of PAK1 in hepatocellular car-
cinoma (HCC) is associated with advanced tumour stages. A
recent report by Wong and colleagues demonstrated that PAK1
activates NF-κB in HCC cells and IPA-3 abrogated this effect.
Within a HCC xenograft model, IPA-3 treatment significantly
reduced tumour volume, and also inhibited phosphorylation of
PAK1 and JNK.142 Increased cell motility and migration was
observed in HCC cell lines stably expressing PAK1. Cell lines
with higher expression of PAK1 showed JNK activation and
inhibition of JNK reduced migration in HCC cells.18 Activation
of VEGFR2/PAK1 signalling was found to promote resistance to
anoikis in hepatoma patients with high expression of Klotho, an
ageing suppressor gene.143 Inhibition of PAK1 activity by
shRNA or IPA-3 reversed this effect in hepatoma cells. PAK1 is
also upregulated by HBV protein HBx that renders hepatoma
cells resistant to anoikis.144

Oesophageal cancer
Oesophageal squamous cell carcinoma (OSCC) is marked by
poor prognosis, and has increasing prevalence in eastern

society.107 145 In order to identify genetic changes within
oesophageal tumour cells, one study used an ESCC xenograft
model.15 146 Lymph fluid collected from patients with ESCC
was injected into nude mice, and analysed via array based com-
parative genomic hybridisation. Interestingly, the authors identi-
fied PAK1, which increased fivefold during tumour growth.15

The MAPK pathway was investigated in ESCC cancer cell
lines derived from bone marrow metastasis in ESCC patients.
Overexpression of the ERK pathway was found to be independ-
ent of MEK1/2145 as pharmacological inhibitors of MEK1
(PD98059), MEK1/2 (U0126) and dominant negative
DN-MEK1/2 failed to abolish ERK activity.145 However,
pharmacological inhibition of the PI3K pathway using
LY294002 or overexpression of KD-PAK1 DN-PAK1 mutants
clearly reduced ERK activity.145 Although the PAK1 mutants did
not affect total protein levels of ERK1/2 or alter the JNK
pathway, this report demonstrated that interplay of PI3K and
PAK1 stimulated ERK pathway independently of MEK.
Continual crosstalk among multiple cell signalling cascades in
ESCC may present a challenge in therapeutic inhibition of
MAPK signalling. However, targeting PAK1 in ESCC may
present an opportunity to inhibit cell signalling interplay
thereby increasing the specificity of pharmacological ERK
inhibition.

PHARMACEUTICAL MODULATION OF PAK1
Through its participation in multiple signalling pathways, PAK1
overexpression in GI cancer promotes cell proliferation, survival
and metastatic progression evading apoptosis (table 3).

Considering the contribution of PAK1 to GI disease, future
strategies aim to target PAK1 expression or inhibition of its
kinase activity for prevention or treatment.

Inhibition of PAK expression
In a microarray analysis performed to examine molecular
targets of mesalamine, PAK1 was identified as a common medi-
ator of pathways modulated in colorectal epithelial cells.76 In
vivo, PAK1 was overexpressed in intestinal polyps of APCmin

mice, and mesalamine blocked both PAK1 expression and
tumour progression.76 In vitro, mesalamine blocked PAK1 at the
protein level.76 As outlined above, PAK1 expression is elevated
in gut inflammation105 and plays a role in the activation of the
NF-κB pro-inflammatory pathway.88 Inhibition of PAK1 and
subsequent NF-κB downregulation by mesalamine may be one
mechanism in which mesalamine blocks inflammation and CAC
altered innate immunity such as activated neutrophils-induced
cell stress.147 PAK1 is required for degranulation148 of mast cells
and neutrophil activation.149 Downregulation of PAK1 by

Table 3 P-21 activated kinase (PAK) overexpression in GI tumourigenesis

PAK overexpression in GI tumourigenesis

Disease

Proliferation Invasion Metastasis

ReferencePAK1 PAK4 PAK1 PAK4 PAK1 PAK4

Colorectal cancer* + + + + + − 14 74 91 92 110 111 113

Gastric cancer* + − + − + + 16 86 134–138 141

Oesophageal squamous cell carcinoma* − − − − + − 15 145

Hepatocellular carcinoma* + − + − − − 18 143 144

(+) investigated; (−) not investigated.
*PAK1 expression increases with advanced disease stage.
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mesalamine within innate immune cells may provide an effective
therapeutic approach in reducing inflammation in active UC.

Another approach to inhibit expression of PAK1 involves
overexpression of miRNA-29, which negatively regulates the
cdc42 and PI3K pathways.150 MiRNA-29 inhibited PAK1 at the
protein level, reduced proliferation, migration and cell invasion
in GC cells.151 MiRNA-145 was shown to target PAK4 and
impedes cell growth in CRC cells.152 Although, future studies
are required to understand if miRNA-29 or 145 can be used to
pharmacologically modulate PAK expression in vivo.

Bradykinin, which is known to be overexpressed in cancer, is
implicated in angiogenesis.153 Furthermore, PAK1 has been cor-
related to angiogenesis154 and is a known effector of the brady-
kinin pathway.155 It was shown that overexpression of the IRX1
gene significantly downregulated both bradykinin and PAK1
protein levels in GC cells.155 It is noteworthy that the IRX1
gene was identified as a tumour suppressor gene in GC156 157

and restoration of IRX1 in vitro and in vivo reduced the metas-
tasis of GC cells.155 Prospective studies should investigate if
pharmacological modulation of IRX1 is effective in blocking
angiogenesis and PAK1 within other GI diseases.

The complexity of targeting PAK1 is highlighted by the fact
that PAK1 has a plethora of kinase dependent and independent
cellular functions. Therefore, inhibition of total PAK1 expres-
sion may be an effective approach in PAK1 intervention. Future
studies should identify whether downregulation of PAK1 expres-
sion by mesalamine, miRNA-29 or modulation of IRX1 is more
effective in blocking inflammation than inhibition of PAK1
kinase activity alone.

PAK1 kinase inhibition
The Rho GTPase Rac1 plays a key role in PAK1 kinase activa-
tion,29 as well as T cell proliferation and differentiation.158

Tiede et al reported that azathioprine and 6-mercaptopurine
(6-MP) induced apoptosis in activated CD4 T cells through
inhibition of Rac1. Rac1 inhibition blocked downstream pro-
survival signalling via downregulation of NF-κB, MAPK and
bcl-xL.159 Considering that PAK1 mediates all three of these
pathways, it is important to investigate the effect of azathioprine
and 6-MP on PAK1 kinase activation and downstream signalling
within both inflammatory and epithelial cells.

Synergistic effects with 5-FU
In CRC, 5-flurouracil (5-FU) is a mainstay chemotherapeutic
drug; however, its effectiveness is limited due to drug resist-
ance.160 Therefore, it is of great interest to investigate a possible
synergism in PAK1 inhibition and 5-FU. Interestingly, in vitro,
knockdown of PAK1 increased apoptosis in 5-FU treated LoVo
cells.91 Additionally, it was investigated if PAK1 knockdown and
5-FU synergistically inhibits tumour growth in a xenograft
model. LoVo cells harbouring shPAK1 constructs were injected
into nude mice and PAK1 knockdown significantly reduced
tumour growth and proliferation.91 A further reduction in
tumour growth was observed in combination with 5-FU.

Small molecule PAK1 inhibitors
Analysis of PAK1’s crystal structure has allowed for the identifi-
cation and design of several PAK1 inhibitors.29 Initial studies
analysed complexes of non-specific ATP-competitive inhibitors,
such as staurosporine derivatives, with PAK1 to conceptualise
kinase inhibition.161 However, identifying a selective inhibitor
for PAK1’s ATP binding pocket has proved to be difficult.
Initially, CEP-1347 was found to inhibit PAK1 but further
studies revealed its higher affinity for mixed lineage kinase-3

than PAK1 itself.162 The celecoxib derivative OSU-03012 was
originally identified as a PDK1 inhibitor. Interestingly, it was
found to inhibit group I PAKs although not completely specific
to PAK1.163 At present, the most potent and selective
ATP-competitive inhibitor of PAK1 is the organouthenium com-
pound FL172, which has been shown to be effective within the
nanomolar range, respectively.162 164 Recently identified PAK1
ATP inhibitors include 2-arylamino-4-aryl-pyrimidines.165 These
selective compounds blocked proliferation of multiple CRC cell
lines at nanomolar concentrations, and their non-cytotoxicity
provides a rational to investigate their effectiveness in vivo.165

Although ATP inhibitors are thought to be highly potent,
they are often non-specific.162 Alternatively, allosteric inhibition
of PAK1 would be less potent, but more specific. IPA-3 is an
allosteric small molecule inhibitor of PAK1. It blocks PAK1
kinase activation by covalently binding to the PBD and inhibit-
ing activation by Rac1/Cdc42. However, IPA-3 cannot inhibit
PAK1 which is already activated.162 IPA-3 is widely used in cell
culture, although its efficiency in animal models may be limited
due to a disulfide bond within the molecular structure.3

Nevertheless, IPA-3 has served as a platform to design allosteric
inhibitors which have increased selectivity and therapeutic
effectiveness within in vivo systems.

FUTURE DIRECTIONS
With accumulating evidence establishing the role of PAK1 in GI
inflammation and CRC, it is reasonable to examine the effect of
PAK1 inhibitors in disease prevention and therapy. However,
considering that PAK1 orchestrates multiple signalling cascades,
it is important to understand the underlying cause of PAK1
overexpression in order to target this molecule. Future studies
are requisite to validate PAK1 as a biomarker and pharmaceut-
ical target.
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