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ABSTRACT
Functional gastrointestinal disorders (FGIDs) are
characterized by chronic complaints arising from
disorganized brain-gut interactions leading to dysmotility
and hypersensitivity. The two most prevalent FGIDs,
affecting up to 16–26% of worldwide population, are
functional dyspepsia and irritable bowel syndrome. Their
etiopathogenic mechanisms remain unclear, however,
recent observations reveal low-grade mucosal
inflammation and immune activation, in association with
impaired epithelial barrier function and aberrant
neuronal sensitivity. These findings come to challenge
the traditional view of FGIDs as pure functional
disorders, and relate the origin to a tangible organic
substrate. The mucosal inflammatory infiltrate is
dominated by mast cells, eosinophils and intraepithelial
lymphocytes in the intestine of FGIDs. It is well
established that mast cell activation can generate
epithelial and neuro-muscular dysfunction and promote
visceral hypersensitivity and altered motility patterns in
FGIDs, postoperative ileus, food allergy and inflammatory
bowel disease. This review will discuss the role of
mucosal mast cells in the gastrointestinal tract with a
specific focus on recent advances in disease mechanisms
and clinical management in irritable bowel syndrome
and functional dyspepsia.

INTRODUCTION
Functional GI disorders (FGIDs) are characterised
by chronic complaints arising from disorganised
brain–gut interactions leading to dysmotility and
hypersensitivity. FGIDs diagnosis is made by
symptom-based approach using the corresponding
Rome criteria. Functional dyspepsia (FD) and IBS
are the two most prevalent FGIDs, affecting up to
16–26% of worldwide population.1 2 However,
despite these figures, their etiopathogenic mechan-
isms remain unclear, accounting for the lack of
diagnostic biomarkers and the paucity of thera-
peutic options providing satisfactory long-standing
clinical remission.3

FGIDs are associated with a high prevalence of
psychiatric comorbidities, chronic fatigue and
chronic somatic and visceral pain disorders, render-
ing substantial social, humanistic and direct and
indirect healthcare costs.4 Recent observations
revealing the presence of low-grade mucosal
inflammation and immune activation, in association
with impaired epithelial barrier function5 6 and
aberrant neuronal sensitivity, come to challenge the
traditional view of FGIDs as pure functional disor-
ders, and relate the origin to a tangible organic sub-
strate that stimulates the search for innovative
diagnostic and therapeutic approaches. Mast cells
(MCs), eosinophils and intraepithelial lymphocytes
dominate the inflammatory infiltrate in the intestine
of FGIDs. MC activation can generate epithelial

and neuromuscular dysfunction and promote vis-
ceral hypersensitivity and altered motility patterns
in FGIDs,7–9 postoperative ileus, food allergy and
IBD.10 This review will discuss the role of mucosal
MCs in the GI tract with a specific focus on recent
advances in disease mechanisms and management
in IBS and FD.

THE ORIGIN, PHENOTYPES AND FUNCTION
OF GI MCS
MCs are long-lived granulated cells derived from
bone marrow myeloid-cell progenitors (CD34+),
under the influence of stem cell factor and interleu-
kin (IL)-4, cytokines that also regulate the develop-
ment of MCs subtypes.11 MC progenitor cells
(CD34+, CD13+, c-kit+, FcεRI−) circulate in low
numbers in the blood and migrate to locate in close
proximity to blood and lymphatic vessels, glands,
smooth muscle and nerves. In the tissue, they
remain as a homeostatic pool or they complete their
differentiation process into mature MCs, as a direct
consequence of genetic background, and inflamma-
tory or bacterial-derived molecules released in the
local microenvironment, including IL-3, IL-4, IL-9,
IL-10, IL-33, CXCL12, transforming growth
factor-β, nerve growth factor (NGF),and stem cell
factor.12 Intestinal homing of MCs progenitor cells
depends mostly on the binding of α4β7 integrin
with their corresponding adhesion molecules such
as cell adhesion molecule-1 or vascular cell adhesion
molecule-1 on the endothelium, although the CXC

Key messages

▸ Mast cells play a central pathophysiological role
in IBS and possibly in functional dyspepsia,
although not well defined.

▸ Increased mast cell activation is a common
finding in the mucosa of patients with
functional GI disorders.

▸ There is a need to implement standardised
methods to count mast cells in the GI mucosa
and to establish reference ranges of normality.

▸ Evaluation of spontaneous and stimulated mast
cell function and activity on GI samples is
recommended when available.

▸ More studies are required to fully understand
the implication of mast cells in the origin of
clinical manifestations of these disorders.

▸ Treatment with mast cell stabilisers offers a
reasonably safe and promising option for the
management of those patients with IBS
non-responding to conventional approaches,
though future studies are warranted to evaluate
efficacy and indications.
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chemokine receptor 2, expressed on MC progenitors, has been
also implicated.13 Mature MCs are particularly abundant in body
barriers, ready for optimal interaction with the local environ-
ment. In the GI tract, MCs comprise 1–5% of mononuclear cells
in the lamina propria and the submucosa, and are also found
intraepithelial and deep in the muscle and serosal layers. Based
on the anatomical location, human MCs are classified into
mucosal MCs and connective tissue MCs, while depending on
protease content, MCs are divided in two large subsets: MCT,
containing tryptase but little or no chymase, and MCTC, contain-
ing tryptase, chymase and carboxypeptidase.12 13 MCC, which
express chymase but little or no tryptase, also have been
described, but they appear to be infrequent.12 13 MCT prevail in
the intestinal and pulmonary mucosa, near T cells, whereas
MCTC are found in the skin and lymph nodes, in addition to the
lung and the gut submucosa.11 In the human small intestine,
MCT represent ∼98% of all MCs in the mucosa and ∼13% of
MCs in the submucosa are MCT.

12 Recently, a new phenotype of
MCs expressing tryptase and carboxypeptidase A3, but not
chymase, has been described in the airway epithelium in asth-
matic subjects and in oesophageal samples of patients
with eosinophilic esophagitis.14 Heterogeneity of MCs also
includes differential content in heparin, cytokines and the recep-
tor for the complement C5a, and the trans-differentiation
between subtypes.12 13 Therefore, location and granule content
will determine the nature of mediators released to the extracellu-
lar milieu, accounting for modulation of specific functions in the
GI tract.11

MCs have been viewed, for the most part, as effectors of
allergy and anaphylaxis and are best known for their association
with pathological conditions such as asthma. However, the
advent of MC lines, mouse strains deficient in MCs and the
reconstitution of these strains with bone marrow-derived MCs
has greatly facilitated the characterisation of various aspects of
MC function in vivo and their involvement in several disease
states by interacting with a variety of other cells implicated in
physiological and immunological responses. In the GI tract,
MCs regulate vascular and epithelial permeability, ion secretion,
angiogenesis, peristalsis, fibrosis and tissue repair, innate and
adaptive immunity, bacterial defence, chemotaxis and nocicep-
tion.11 Hence, uncontrolled or dysregulated MC activation may
interfere with gut homeostasis and generate tissue dysfunction
and promote inflammation in diverse GI diseases such as food
allergy, IBD, postoperative ileus, autoimmune disorders, cancer
and FGIDs.11 However, at the same time, MCs are indispens-
able for controlling a wide range of pathogenic infections, and
for modulation innate and adaptive immune responses.15

Indeed, MCs can be intentionally activated to enhance protect-
ive host responses, including the production of high-affinity
antibodies and immunological memory, raising the possibility of
incorporating MC activators in vaccine formulations to harness
the inherent adjuvant activity of MC activation.15

REGULATION AND ACTIVATION OF MCS
The classical and most effective stimulus for MC activation is
cross-linking of cell surface-bound IgE to its high-affinity recep-
tor (FcεRI) by allergen in sensitised individuals.16 This results in
a sequence of phosphorylation cascades and activation motifs
that leads to intracellular calcium flux, activation of certain tran-
scription factors such as AP-1 (c-FOS, v-Jun), MITF and
STAT-5, and MC degranulation and cytokine production.17

MCs also express receptors for IgG (FcγRI), immunoglobulin
free-light chains (IgLC), other Ig-associated receptors, comple-
ment fractions and toll-like receptors. Moreover, MCs can be

activated by neurotransmitters, neuropeptides, growth factors
and hormones (table 1), accounting for MC versatility. Upon
activation, MCs release newly synthesised (lipid mediators and
cytokines) and stored (histamine, heparin, proteases) bioactive
substances contained in cytoplasmic lipid bodies and granules
(figure 1). Secretion is achieved by IgE-mediated rapid release of
all granule contents by fusion of granules and extrusion (ana-
phylactic degranulation) or by partial or total granule emptying
without inter-granule fusion (piecemeal degranulation).18

Neuropeptides, cytokines and microbial products induce piece-
meal degranulation as frequently seen in diverse diseases, includ-
ing IBD, IBS and FD.19

FACTORS AND MECHANISMS UNDERLYING MC
ACTIVATION IN THE GUT
Food antigens as trigger for MC activation
The majority of patients with FGIDs consider their symptoms to
be related to meals. For example, >60% of patients with IBS
report the onset or worsening of symptoms after meals, within
15 min in 28% and within 3 h in 93% of these patients.20 21

Classically, in food allergy, MCs are activated by food antigen-
dependent cross-linking of antigen-specific IgE to FcεRI. Although
some patients with IBS have a higher incidence of atopy,22 food
allergy has not been convincingly associated to FGID pathogen-
esis. Of note, adverse reactions to food, including some types of
food intolerance, may occur through IgG-mediated sensitisation of
MCs, but the role for these IgG-mediated immune reactions
remains to be established.20 22 When candidate food antigens are
directly applied to the duodenal mucosa of IBS patients with sus-
pected food intolerance through an endoscope, it caused immedi-
ate epithelial breaks, increased intervillous spaces and increased
intraepithelial lymphocyte numbers in the intestinal mucosa,23

and an individualised exclusion diet improved symptoms in 74%
of patients at 1-year follow-up. The underlying mechanism and
the potential role for MCs requires further study. On the other
hand, the response to food is also partly regulated by neuroendo-
crine factors including peripheral serotonergic responses.24

Although MCs can secrete and synthesise serotonin from trypto-
phan and serotonin is a chemotactic molecule for MCs,25 and

Table 1 Triggers of mast cell activation

Type of
stimuli

Type of
molecule Molecule/stimuli

Immune Immunoglobulins IgE, IgG, free light chain-Ig (+antigen)
Other C3a, C5a, IL-4, IL-6, IL-9, IL-10, TNF-α,

IFN-γ
Non-immune Neurotransmitters Acetylcholine, dopamine, serotonin,

epinephrine, histamine
Neuropeptides SP, VIP, HRP, CGRP, SS, NT, bradykinin
Hormones ACTH, CRF, PTH, Ucn, oestradiol
Growth factors NGF, SCF, TGF-β, FGF-2, VEGF, PD-ECGF
Biological LPS, peptidoglycan, Mycobacterium
Physicochemical NO, osmotic, thermal, pH, humidity,

trauma, pressure, hypoxia, radiation, free
radicals

Modified from ref.119
ACTH, adrenocorticotropic hormone; C3a, complement component 3a; CGRP, calcitonin
gene-related peptide; CRF, corticotropin-releasing factor; FGF-2, fibroblast growth
factor-2; HRP, histamine-releasing peptide; IFN-γ, interferon gamma; Ig, immunoglobulin;
IL, interleukin; LPS, lipopolysaccharide; NGF, nerve growth factor; NO, nitric oxide; NT,
neurotensin; VIP, vasoactive intestinal peptide; PD-ECGF, platelet-derived endothelial cell
growth factor; PTH, parathormone; SCF, stem cell factor; SP, substance P; SS,
somatostatin; TGF-β, transforming growth factor beta; TNF-α: tumour necrosis factor
alpha; Ucn, urocortin; VEGF, vascular endothelial growth factor.
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some adverse reactions to diet in FGIDs involve foods containing
serotonin, including cheese, meat, soya beans, cereals, nuts and
vegetables,26 the role of MCs in such responses, if any, is mostly
ignored. Finally, spice intake correlates directly with the likelihood
of developing IBS in females.27 Spicy foods contain capsaicin, the
natural ligand of transient receptor potential vanilloid 1 (TRPV1)
receptors on nociceptive afferent C-fibres. The increased density
of sensory fibres expressing TRPV1 receptors reported in patients
with FGIDs and visceral hypersensitivity,28 the genetic polymorph-
ism of TRPV1 gene in FD,29 the potential TRPV1 sensitisation in
patients with IBS,30 the close proximity of MCs to TRPV1 expres-
sing sensory nerve fibres and the ability of capsaicin to modulate
MCs31 all suggest that transmission of pain signals, including those
generated by spicy foods, may be enhanced in FGIDs. In contrast,
desensitisation of afferent terminals by a high capsaicin diet seems
also plausible, as one study reported beneficial effects on abdom-
inal bloating and pain in response to the ingestion of encapsulated
red pepper for 6 weeks in IBS.32

The role of infections
Post-infectious (PI)-FGIDs represent common entities in daily
clinical practice. Infectious gastroenteritis is associated with an
increased risk for FD and IBS; however, the mechanisms leading
to chronicity remain unknown.33 MCs are potential regulatory
linkers between innate and adaptive immunity and have been
demonstrated to play critical roles in host defence, participating
in effective immune responses to a number of bacterial, para-
sitic, viral and fungal pathogen products.15 Antibody titres
against bacterial flagellin are increased in patients with IBS and
are even higher in PI-IBS.34 Recently, increased mucosal Ig pro-
duction and upregulation of germline transcripts and Ig genes
have been identified in diarrhoea predominant IBS (IBS-D)
together with increased proximity between MC and plasma cell,
suggesting MC activation by Ig.35 Whether FGID individuals
may become sensitised to food and microbial antigens during an

acute infection and subsequently develop antibodies that will
activate MCs upon antigen exposure remains to be established.

The role of stress
Chronic stress may also lead to MC activation. In preclinical
studies, several types of stresses and stress mediators such as cor-
ticotropin releasing hormone (CRF) and related peptides have
been shown to modulate ion and water secretion as well as intes-
tinal and colonic paracellular and transcellular permeability, pri-
marily via nerve–MC interactions.36 37 Similarly, stress-induced
rectal hyperalgesia could be prevented and reversed by administra-
tion of an MC stabiliser.38 Other studies have confirmed and
extended this paradigm to the human intestine. Santos et al39

showed that a cold stress increased jejunal MC tryptase and hista-
mine release along with intestinal water secretion, and intestinal
permeability, with larger responses in women with moderate levels
of background stress.40 CRF has been shown to enhance transcel-
lular uptake of macromolecules in human colonic mucosa via
CRF-R1 and CRF-R2 receptors located on subepithelial MCs.41

More recently, acute psychological stress (public speech) has been
shown to increase small intestinal permeability in humans.42 This
effect could be reproduced by peripheral administration of CRF,
and blocked by the MC stabiliser disodium cromoglycate (DSCG).
Preclinical models showed that chronic stress can induce substance
P (SP) release by efferent nerves in the periphery, leading to CRF
expression and release by intestinal eosinophils. Eosinophil-
derived CRF was then capable of activating MCs, resulting in
jejunal epithelial barrier dysfunction.43 SP, NGF and sex steroids
also induce the release of vasoactive mediators fromMCs, contrib-
uting to chloride secretion, barrier dysfunction, hyperalgesia, diar-
rhoea, inflammation and motility changes.44 45

MC INFILTRATION IN THE GI TRACT IN FGIDS
Since the description by Weston et al46 in 1993 on the infiltra-
tion of the terminal ileum by MCs in IBS, numerous studies

Figure 1 Ultrastructure of human
mucosal mast cell. (A) Ultrastructure of
an activated mast cell in the intestinal
mucosa, with irregular plasma
membrane and numerous lipid bodies
(arrow) and cytoplasmic granules,
displaying piecemeal degranulation.
Intact (white arrowhead) and
degranulated (black arrowhead)
granules are identified. (B and C)
High-magnification micrographs of
cytoplasmic granules from a mucosal
mast cell. Different granule patterns
are observed, with crystalloid structure
(B) and scrolls (arrow, C). Enlarged
empty and partially empty granule
containers (black arrowhead) are
typical of piecemeal degranulation.
Bars: 1 μm (A) and 0.5 μm (B and C).
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Table 2 Studies describing mast cell infiltration and activation in FD and IBS and potential correlation with symptoms

Condition and number of subjects Site of biopsy Mast cell numbers
Mast cell
detection Mast cell mediators Correlation with symptoms Reference

141 FD and 39 controls Duodenum Increased counts Toluidine blue
staining

NA NA 66

15 FD and 15 controls Duodenum Increased Anti- tryptase NA NA 9

19 FD and 19 controls (paediatric) No change Anti- tryptase NA No correlation between permeability and mast cell density 120

65 H. pylori-negative FD (paediatric) Gastric body and
duodenum

Anti- tryptase NA Headache was associated with high mast cell counts in the
gastric body and duodenum

65

51 FD, 20 IBS-D and 21 IBS-C and 48
controls

Duodenum Increased counts in IBS-C and IBS-D
and trend for increase in FD

Anti-CD-117 NA NA 61

62 FD (33 H. pylori-positive,
29 H. pylori-negative and
29 H. pylori-positive inflammatory
control subjects and 20 controls

Antrum and corpus Increased in H. pylori-negative and
positive FD samples in antrum and
corpus

Anti- tryptase NA NA 64

225 patients with non-ulcer dyspepsia Antrum 31 (13%) were found to have 11 or
greater mast cells per high-power
field

Alcian blue
staining

NA NA 121

Total of 101 IBS and 23 controls, for
IHC: 15 controls; 15 IBS-C; 14 IBS-D

Descending colon Increased counts Anti-tryptase NA NA 77

13 IBS-D, 8 IBS-C and 10 controls
(paediatric)

Ileum, right colon and left
colon

No change in numbers but mast
cells in closer proximity to nerves in
IBS (MC-NF/mm2)

Anti-tryptase NA Abdominal pain correlated with MC/mm2 in the ileum and
MC-NF/mm2 in the right colon

122

49 IBS-D and 30 controls Jejunum Increased counts in non-atopic IBS Anti-CD-117 NA NA 35

100 IBS and 100 controls Colon, ileum, duodenum
and stomach

No change Anti-CD-117 and
anti-CD-25

NA NA 52

55 IBS-D and 18 controls with lactase
deficiency

Sigmoid colon, ascending
colon and terminal ileum

Increased counts in the terminal
ileum, ascending and sigmoid colon

Anti-tryptase NA Anxiety scores were associated with mast cell counts in
sigmoid colon, ascending colon and terminal ileum.
Visceral sensitivity (ie, decrease in urgency, discomfort/pain
threshold) was increased in patients with high mast cell
density in the terminal ileum

123

22 IBS-D and 21 controls Rectum Increased counts in IBS-D Anti-tryptase NA Mast cell counts did not correlate with IBS symptoms including
abdominal pain; mast cell counts correlated with substance P
and VIP in women but not in men

124

83 IBS-D, 49 UC (28 in remission and 21
mildly active UC) and 25 controls

Ascending, transverse,
descending, and sigmoid
colon

Increased counts in patients with
IBS-D, UC in remission and mildly
active UC

Anti-tryptase NA NA 125

51 IBS, 49 quiescent IBD (31 CD and 18
UC) and 27 controls

Caecum increased in patients with IBS, CD or
UC (no difference between patients
between patients with or without
IBS-like symptoms

Anti-CD-117 NA NA 126

16 IBS-D and 7 controls Rectum No change Anti-tryptase Increased tryptase
release

Mast cell counts correlated with intestinal permeability 127

45 IBS-D and 30 controls Jejunum Increased counts Anti-CD-117 Increased tryptase
mRNA and protein

Tryptase mRNA expression but not mast cell counts correlated
with stool frequency and consistency in IBS-D patients;
tryptase protein expression correlated CLDN2 protein
overexpression and increased OCLN cytoplasmic staining

8

16 IBS-D, 21 IBS-C and 11 controls Descending colon Increased counts in IBS-C but not
IBS-D

Anti-tryptase NA Mast cell counts of IBS but not controls correlated with the
twitch enhancement evoked by biopsy supernatants

87
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Table 2 Continued

Condition and number of subjects Site of biopsy Mast cell numbers
Mast cell
detection Mast cell mediators Correlation with symptoms Reference

34 IBS and 15 controls Rectum Increased counts Anti-CD-117 Increased tryptase
release

IBS severity correlated with colonic permeability, mast cell
counts and tryptase

95

4 IBS-C, 11 IBS-D, 8 IBS-A
and 15 controls

Colorectum No change Anti-tryptase NA NA 128

11 IBS-D and 14 controls (paediatric) Rectum No change Anti-tryptase and
anti-CD-117

NA NA 129

15 IBS-D, 15 IBS-C, 36 IBS-A
and 20 controls

Descending colon decreased mast cell counts Anti-CD-117 NA No correlation between the number of mast cells and
abdominal pain or sensory thresholds of first sensation, urge
or discomfort

51

25 IBS-D and 23 controls Jejunum Increased counts Anti-CD-117 Increased tryptase
mRNA

Tryptase and SCF correlated with tight junction ZO protein
expression. Bowel frequency and stool consistency correlated
with both the number of mast cells and tryptase mRNA
expression, and with the expression of ZO proteins

91

12 IBS-C, 13 IBS-D and 12 controls Descending colon Increased counts Anti-tryptase Increased serotonin,
histamine and tryptase
release irrespective of
bowel habit

5-HT release correlated with mast cell counts and the severity
of abdominal pain

130

60 IBS and 22 controls Rectum and descending
colon

decreased mast cell counts in rectal
biopsies

Anti-tryptase and
anti-CD117

Lower release of
tryptase, slight increase
in histamine release

The severity of abdominal pain was not correlated with mast
cell counts; no correlation between abdominal pain and
spontaneous histamine or tryptase release

103

13 IBS-D, 8 IBS-C, 4 IBS-A, 10 active CD
and 18 controls

Descending colon Increased counts in IBS-D but not in
IBS-C

Anti-CD-117 Increased trypsin-like
protein

NA 131

27 IBS-D, 21 IBS-C, 12 MC 20 UC and
24 controls

Descending colon Increased counts Anti-tryptase NA Mast cell counts in patients with IBS was associated with
abdominal bloating frequency and with symptoms of
dysmotility-like dyspepsia, but not ulcer-like dyspepsia

74

7 IBS-D, 4 IBS-C and 4 controls Descending colon Increased counts Anti-tryptase Increased tryptase and
histamine release but
not serotonin

Association between the number of mast cells and the
corresponding supernatant-evoked spike frequency. Tryptase,
histamine and serotonin concentrations all correlated with the
supernatant-evoked action potential discharges

80

8 IBS-D, 8 IBS-C, 7 IBS-A and 22
controls

Rectosigmoid Increased counts Anti-CD-117 NA c-kit+ cells correlated with maximal VAS pain score 28

50 IBS, 21 controls, 11 depressed/
fatigued patients without IBS

Caecum Increased in IBS, unchanged in
depressed/fatigued patients w/o IBS

Anti-CD-117 NA In IBS, but not in controls or depressed patients, mast cell
counts correlated with the severity of fatigue and depression

60

29 IBS and 15 controls Descending colon Increased counts Anti-tryptase Increased tryptase,
histamine and PGE2
release

NA 78

18 IBS and 12 controls and 4 UC and 1
CD

Rectum and ascending
colon

No change Alcian blue
staining and
anti-tryptase

Increased trypsin and
tryptase protein

NA 79

20 IBS-D and 14 controls Jejunum Increased counts CD-117 Increased tryptase
release

No correlation between mast cell counts and gender
or stress levels

62

20 IBS-D, 18 IBS-C and 20 controls Descending part of the
duodenum, proximal end
of jejunum and terminal
ileum

Increased counts in IBS-C and IBS-D
in ileum but not duodenum or
jejunum

Anti-tryptase Decreased 5-HT contents
at the jejunum in
patients with IBS-C

NA 132
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evaluated MC numbers in the GI mucosa of FGIDs (table 2). It
is interesting to note here that the presence of low-grade intes-
tinal inflammation in the gut of these patients also involves an
increase in intraepithelial T lymphocytes, and less consistently,
enterochromaffin cells, plasma cells, B lymphocytes, neutrophils
and other immunocytes.47 48

MCs have been identified by metachromatic stains such as
Giemsa or toluidine blue, but these methods have been replaced
by immunohistochemistry (antibodies for c-kit (CD117) or tryp-
tase)49–51 because it is more sensitive and specific. MC counts
are comparable with both stains, yet CD117+ cells display a
more stable membranous staining, whereas tryptase+ cells
display cytoplasmic staining that could be influenced by cell
degranulation.52 FGID biopsies contain singly dispersed MCs
with no aggregates.52 When elevated MC counts are detected, it
may be helpful to exclude systemic mastocytosis by staining for
the low-affinity receptor for IL-2 (CD25).52 A reference range
for significant increased MC counts is still lacking. This is partly
due to the absence of agreement and standardisation on the
methodology used to count MCs, to differences in patient and
control selection, inter-individual variation, location of the
biopsy, the relatively small cohort numbers for the majority of
individual studies and to other uncontrolled potential confound-
ing factors (box 1) (see Nasser et al for a detailed review). The
great variation in reporting mean mucosal MC numbers in the
GI tract makes the interpretation of discriminatory cut-off
values very complicated and currently uninterpretable according
to some pathologists.53 MC counts have been found to be
normal, increased or decreased in IBS (table 2). However,
although the numbers vary across studies and segments, the ana-
lysis of >1000 IBS biopsies detects a mean, modest 1.2-fold to
2.5-fold increase in MC numbers throughout the entire GI
tract.54 55 This is also true for cases of chronic undefined diar-
rhoea, mostly studied in the upper small bowel and left colon,
to the point that some pathologists debate the convenience of
coining the term mastocytic enterocolitis for this clinical–patho-
logical association.56 A significant finding is that mucosal MC
‘hyperplasia’, when present, is not limited to the lower small
intestine57 58 and colon59 60 but also involves the duodenum,61

the jejunum62 and the rectum.63 While there is discrepancy in
IBS, available studies in FD reveal that MC numbers are signifi-
cantly increased in the antrum and corpus of Helicobacter
pylori-negative FD,64 65 and in the duodenum of patients with
FD (table 2).9 61 66 67 Moreover, increased MCs have been
recently reported in the oesophagus of patients suffering from
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Box 1 Conditions that may alter, commonly increase,
the number of mast cell counts in the GI tract

Allergic diseases: chronic urticaria, food allergy, atopy,
hereditary angioedema.11 98

Mastocytosis and mast cell activation syndrome.52

Coeliac disease: increased in initial stages and decreased in later
stages.135

Neuroendocrine cancer, lymphoma, epithelial cancers, carcinoid
syndrome
H. pylori gastritis, infectious and parasitic enteritis,
IBS,136 lymphocytic colitis.48

Intestinal pseudo-obstruction, diverticulitis.137

Vasculitis, amiloidosis, drugs.
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non-cardiac chest pain.68 Even so, it is hard to dismiss the
physiological relevance of such ‘modest’ increases because, on
the one side, similar incremental changes in leucocyte counts in
circulating blood occur in infectious and inflammatory condi-
tions, and on the other side, the magnitude of cell change is
enormous if we consider the total mucosal surface of the GI
tract.

When evaluating MCs in IBS subtypes, some studies show
that MC hyperplasia is more common in IBS-D69 70 and in
non-PI IBS71 than in other subtypes, though in many other
studies this is not the case.72–74 In contrast, MCs are increased
similarly in gastric biopsies in PI-FD and non-specific FD.75

Moreover, others found MC numbers decreased in the descend-
ing colon of diarrhoea and alternating predominant IBS, but not
constipation predominant IBS compared with health.51 There is
also some indication that MC numbers remain increased com-
pared with both non-PI IBS and controls, 3 years after Shigella
infection.73 Although not the scope of this review, an increased
number of MCs have been reported in the colorectal mucosa, in
the lamina propria and in the submucosa from patients with
Crohn’s disease and UC.10

The role of gender differences in MC number is unclear.
Several lines of evidence indicate that gonadal steroids are
involved in gender-related differences in tissue MC infiltration
in the colon. This difference in the number of MCs has been
described in a variety of tissues from rodents, such as skin, myo-
cardium and rat colon. When specifically analysed, some
authors found increased MC counts in the terminal ileum,
ascending and descending colon, and rectum of female versus
male controls,57 60 74 with females showing 43% increase in the
area occupied by MCs,7 similar to observations in patients with
chronic undefined diarrhoea,53 while others do not.51 60 63

These data raise the hypothesis that gender-dependent differ-
ences in immune responses are involved in the observed higher
prevalence of IBS in females, in the described gender-related dif-
ferences in IBS pathophysiology and in the known effects of the
menstrual cycle in the modulation of rectal sensitivity.76

Differences in MC numbers in the jejunum, caecum, colon
or rectum of IBS are not attributable to age, stress and
cortisol levels, anxiety or depression, or duration of the
disease.51 60 62 69 Although disputed, it seems that changes in
MC counts cannot be easily explained by differences in bowel
preparation.7 48 The role of diet on MC counts remains to be
established. Thus, the diagnostic utility of routine MC stains in
GI biopsies remains unclear and requires further investigation.

MC ACTIVATION IN THE GI TRACT IN FGIDS
MC activation in the GI tract may be evaluated by (1) morpho-
logical analysis, most commonly by checking ultrastructural
characteristics of piecemeal or anaphylactic degranulation on
transmission electron microscopy (TEM); (2) measuring the
spontaneous or stimulated release of mediators in tissue, intes-
tinal fluid and blood, most commonly tryptase and histamine,
and less often hexosaminidase, carboxypeptidase A, heparin,
chromogranin A, leukotriene E4, prostaglandin D2 and prosta-
glandin 9α,11βPGF2 and methylhistamine in urine; and (3) the
expression of related genes and proteins in the mucosa (figure 2).

Based on TEM studies, it has been shown that MCs display
higher activation rates in the caecum and rectum in IBS-D, and
that activation rates increase even more when nerve–MC dis-
tance is <2 μm.59 Moreover, MCs located within 5 μm of nerve
fibres were 3.1 times more frequent in the descending colon of
IBS than in controls, and there was a 150% increase in the
number of degranulating MCs.7 Furthermore, the ileal and

colonic density of neuronal specific enolase, SP and 5-
hydroxytryptamine positively stained nerve fibres increased and
appeared in clusters, surrounding an increased number of MCs
with no differences between PI and non-post-infection patients
with IBS.73 77

Supernatants of mucosal biopsies of patients with IBS contain
increased concentrations of histamine, serotonin, trypsin, tryp-
tase, prostaglandin E2, other proteases and cytokines.7 78–80

Moreover, jejunal luminal tryptase release was five times
higher62 and the expression of both tryptase mRNA and protein
enhanced in jejunal tissue8 in IBS-D, while serum tryptase
remained unaltered. Tryptase protein expression was also higher
in both PI FD and non-specific FD gastric biopsies.64

It is interesting that λIgLC+ MCs but not IgE or IgG+ MCs
are reduced in the colon of IBS.51 This finding, together with
the description of elevated serum concentrations of λ and κ
IgFLC in IBS,81 suggests that Ig light chain-mediated MC activa-
tion may be associated with IBS.

Taken together, evidence indicates that the activity of MCs
rather than an increased number is essential in the pathophysi-
ology of FGIDs, a point that has been recently raised by several
experts in the field.

LINKING MC INFILTRATION AND ACTIVATION IN THE GI
TRACT WITH CLINICAL MANIFESTATIONS IN FGIDS
Role of MCs in visceral hypersensitivity and motility
changes: motor and neuronal activation and sensitisation
In the human gut, MCs lie in close proximity to GI mucosal
sensory nerve fibres containing neuropeptides, including visceral
afferents expressing TRPV1 receptors.82 This close spatial asso-
ciation, when coupled with MC activation, has been suggested
to be of functional relevance for neuromuscular function and
altered pain perception in response to insults such as infections,
stress and emotions in FGIDs.47 83 Indeed, afferent innervation
of enteric MCs can trigger the release of histamine and MC
protease II, mediators that act in a paracrine manner to elevate
the sensitivity of spinal afferent terminals.84 The use of superna-
tants obtained from biopsies allows us to study the effect of
these mediators on neuronal activation and sensitisation.
Injection of IBS-derived supernatants into rat mesenteric arteries
evoked a marked increase in afferent nerve discharge, whereas
injection of control supernatants had no effect.79 In addition,
IBS-dependent excitation of dorsal root ganglia (DRG) was
inhibited by histamine H1 receptor blockade and serine prote-
ase inactivation,78 underscoring the role of MC mediators in
neuronal activation. These findings were confirmed by Buhner
et al, who reported that IBS biopsy supernatants, but not those
of healthy controls, significantly increased the spike discharge of
human submucosal neurons. This effect was inhibited by hista-
mine receptor (H1-H3) antagonists, 5-HT3 receptor antagonist
and protease inhibition.80 Moreover, supernatants from hyper-
sensitive patients with IBS caused stronger activation of guinea
pig enteric and mouse DRG neurons compared with superna-
tants of normosensitive patients,85 indicating that neuronal acti-
vation responses in vitro correlate with the individual pain
threshold pressure values. Others showed that intracolonic infu-
sion of IBS supernatants, but not controls, caused increased
nociception in response to colorectal distention in mice, an
effect that could be prevented by a serine protease inhibitor and
was absent in neurons lacking functional protease-activated
receptor-2.79 More recently, Cenac et al86 showed that colonic
biopsies from patients with IBS contain increased levels of poly-
unsaturated fatty acid (PUFA) metabolites, these are endogenous
TRPV4 agonists, compared with healthy subjects, and these
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Figure 2 Schematic representation of the experimental procedure to assess mucosal mast cell activation. Mast cell activation can be measured in
intestinal samples. Luminal content can be obtained by aspiration, before biopsies are collected, and tryptase content can be quantified. Different
mucosal biopsies can be processed for histological examination, including mast cell counting after immunohistochemistry (tryptase and/or c-kit
staining) and laser microdissection for ulterior gene expression analysis; ultrastructure analysis, to assess the type and degree of degranulation and
to identify granule pattern; gene expression analysis of specific mediators synthesised and released by mast cells (tryptase, carboxypeptidase,
chymase); quantification of mediators that are spontaneously released from biopsies and/or performing functional studies in vitro (muscle/nervous
cells) or in vivo (mice/rats); and electrophysiology experiments in Ussing chambers for identification of mast cell-dependent changes in barrier
function. Finally, analysis of the possible association between clinical manifestations and mast cell activation can be performed.

Figure 3 Schematic illustration of mast cell–nerve interactions in human gut. MCs and nerves communicate bidirectionally, thereby modulating
peristalsis and pain signalling. The release of bioactive, pro-inflammatory, mediators by mast cells results in a variety of neuronal effects including
activation, sensitisation and recruitment of nociceptors to the cell membrane, neurogenic inflammation and neural sprouting, ultimately leading to
visceral hypersensitivity. On the other hand, neuronal activation triggers the release of neuropeptides and neurotransmitters, thereby further
activating mast cells. 5-HT3, 5-hydroxytryptamine receptor 3; CRGP, calcitonin-related gene peptide; H1R, histamine receptor 1; Ig, immunoglobulins;
NK1, neurokinin 1 receptor; NGF, neuronal growth factor; PGs, prostaglandins; PAR2, proteinase-activated receptor-2; SP, substance P; TRPV1,
transient receptor potential vanilloid 1; TLR, toll-like receptor; TrkA, receptor for nerve growth factor.
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increases correlated with pain and bloating scores. PUFA meta-
bolites extracted from IBS biopsies or colons of mice with vis-
ceral hypersensitivity activated mouse sensory neurons in vitro,
by activating TRPV4, an effect that could be prevented by
siRNA knockdown of TRPV4.86 Finally, application of superna-
tants on muscle strips evoked excitatory cholinergic longitudinal
muscle contractions of the guinea pig ileum, an effect that was
not dependent on serotonin, proteases or histamine but was
(partially) mediated by TRPV1, purinergic P2X receptors and
prostanoid receptors.87 Ballestra et al speculate that afferent
nerve activation may induce myenteric cholinergic depolarisa-
tions, leading to altered motor function (figure 3).

Besides increased neuronal activation, supernatant of biop-
sies from patients with IBS also has the capacity to potentiate
sensory nerves. In a recent, elegant study, murine DRG
neurons were incubated overnight with supernatants of sub-
mucosal colonic biopsies of IBS. Patch clamp recordings the
next day revealed that the intrinsic excitability of the colonic
nociceptive DRG neurons was increased by IBS-D superna-
tants. This increased excitability was not observed in DRG
neurons lacking PAR-2.88 Finally, incubation of a neuronal cell
line or rat primary myenteric neuron cultures with mucosal
biopsy supernatants from IBS also induced long-lasting neuro-
plastic changes as reflected by increased NGF-dependent neur-
onal sprouting.77

Together, these preclinical data consistently indicate that the
mucosa and submucosa of patients with IBS contains increased
levels of various MC mediators that have the potential to acti-
vate and potentiate intrinsic and afferent neurons, thereby
leading to increased visceral pain perception and altered motor
function that may cause diarrhoea or constipation as a result of
excessive segmental contractile colonic motor activity (table 3).
Of note, the use of human supernatants on animal models or
isolated neurons may not completely reflect human physiology
as MCs and enteric neurons exhibit species specificity in medi-
ator release mechanisms and receptor profile.16 To further assess
the functional relevance and specificity of supernatant-mediated
activation of nerve endings in the gut, it may be of great interest
to perform live imaging of MC-nerve signalling in human pre-
parations or to perform confocal endomicroscopy. The latter
has recently been used to identify suspected food intolerance in
patients with IBS.23

Role of MCs in the regulation of intestinal barrier function:
secretion and permeability
MCs’ contribution to barrier function was first described in
animal studies in which increased ion secretion and transepithe-
lial transport of macromolecules was reversed with an MC sta-
biliser.89 In humans, stress induces the release of MC mediators
(tryptase, histamine) to the intestinal lumen39 and increases
intestinal permeability, which can be reversed by oral DSCG.42

Stress can severely impact on barrier function and favour intes-
tinal disease, as might be the case for FGIDs. IBS and FD
patients experience high levels of anxiety, depression and stress3

and intestinal permeability, as measured by probe excretion
assays, has been found altered, primarily in PI-IBS and IBS-D.90

The mechanisms underlying epithelial barrier alterations are not
fully understood, but disruption of the proteins that seal the
paracellular space seems to play a role. Actually, in IBS, the
expression of several tight junctions (TJ) proteins is reduced
compared to controls and, in IBS-D, this reduction correlates
with MC activation and with common clinical symptoms.91 In
FD, the altered expression of cell-to-cell adhesion proteins also
correlates with impaired duodenal integrity and with mucosal
inflammation.9 MCs’ proximity to the epithelium facilitates
tryptase activation of PAR-2 receptors on the basolateral side of
enterocytes, leading to redistribution of TJ and increased para-
cellular permeability to macromolecules.92 Other mediators
released by MCs upon activation, such as histamine, chymase
and prostaglandin D2, regulate epithelial chloride and water
secretion and permeability.93 94 MC-mediated intestinal barrier
alterations have been also related to neuropeptides, neurotrans-
mitters, hormones (vasoactive intestinal peptide, SP, NGF, oes-
trogen, oestradiol), and inflammatory mediators (tumour
necrosis factor-α, interferon-γ and cytokines) released by other
immunocytes93 (figure 4).

Role of MCs in IBS cardinal manifestations
MCs in close proximity to nerves in the descending colon were
significantly correlated with severity and frequency of abdom-
inal pain/discomfort.7 In another study, mucosal MC infiltration
was significantly associated with abdominal bloating frequency
and with symptoms of dysmotility-like dyspepsia.74 In contrast,
in IBS, there was no correlation between severity or frequency
of abdominal pain/discomfort and lamina propria area occupied

Table 3 Effect of mast cell mediators on GI function

Mediator Receptor IBS/cell type Effect Reference

Histamine H1R IBS-C; IBS-D Excite rat mesenteric afferents 78

Excite murine DRG neurons 78

H1-H3R IBS-C; IBS-D Excite human submucosal neurons 80

– – Epithelial secretion of Cl− and H2O
138

Tryptase PAR2 IBS-C; IBS-D Sensitise/activate murine DRG neurons 78

IBS-C; IBS-D Excite human submucosal neurons 80

IBS-D but not
IBS-C

Sensitisation murine colonic DRG neurons 88

IBS-D, IBS-A Increase epithelial permeability 139

Serotonin 5HT3R IBS-C; IBS-D Excite human submucosal neurons 80

T84 cells Secretory response 140

PGD2 DP1 IBS-C and IBS-D Excite guinea pig longitudinal muscle strips 87

– – Epithelial secretion of Cl− and H2O
138

Chymase PAR2 Caco BBe Increase epithelial permeability 94

DRG, dorsal root ganglia; IBS-A, alternating subtype of IBS; IBS-C, constipation-predominant IBS; IBS-D, diarrhoea-predominant IBS; H1R, histamine receptor 1; PAR2,
proteinase-activated receptor 2; 5HT3R, 5-hydroxytriptamine receptor 3; PGD2, prostaglandin D2; DP1, PGD2 receptor.
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by MCs, release of tryptase and histamine, and number of
degranulated MCs per field.7 57 IBS-D patients with rectal
hypersensitivity, according to the maximally tolerable pressure
to barostat distention, showed significantly lower counts of MCs
in the terminal ileum, ascending colon and rectum in one
study.57 Park et al57 speculated that this counterintuitive finding
was related to tissue desensitisation by MC mediators. More
recently, Braak et al51 found no correlation between the sensory
thresholds to barostat distention, abdominal pain, bloating,
urgency, incomplete evacuation, hard stools, loose stools, fre-
quent and decreased bowel moments and flatulence and MC
counts in the colon. An association between duodenal and
antral MCs with pain, and postprandial distress syndrome,
respectively, has been shown in children with FD.67

Impaired intestinal permeability, and the expression of TJ
proteins, has been shown to correlate with pain/discomfort and/
or bowel habit.90 91 95 96 Interestingly, tryptase mRNA and
protein expression in the jejunum of patients with IBS-D corre-
lated with stool frequency and consistency but not with abdom-
inal pain, whereas the correlation with MC number was poor.91

Caecum MC counts correlated significantly with the fatigue
and depression scores in IBS,60 and in some studies, there is a
tendency or an association between depression and state of
anxiety scores and the number of MCs in patients with IBS-D.57

A significant correlation with antral MC densities with anxiety,
depression and somatisation has been reported in children with
FD.67 Moreover, the degranulation of MCs in the duodenum
appears to be highly sensitive and specific for the identification
of adult patients with FD as shown by 100% sensitivity and spe-
cificity indicated by an area under the receiver operating charac-
teristic curve of 1.0 for the optimal degranulation rate cut-off
values of 30.2% at the duodenal bulb and 36.8% at the des-
cending part of the duodenum.66

Taken together, these findings suggest that interactions
between the MCs and the enteric and brain–gut neural networks
could be of importance in symptom perception in at least a sub-
group of patients with FGIDs.

TARGETING MCS: IMPLICATIONS FOR TREATMENT
OF FGIDS
The MC stabiliser DSCG abolished the effect of acute psycho-
logical stress on small bowel permeability in human subjects.42

Aside from experimental studies demonstrating the efficacy of
several MC inhibitors to decrease colonic hypersensitivity, in
humans, a number of uncontrolled observations,56 and open clin-
ical studies with DSCG, in doses between 600 and 1800 g/day,
suggest its clinical benefit for chronic persistent diarrhoea,97 aller-
gic enteritis,98 FD99 and IBS.100–102 However, these studies had

Figure 4 Intestinal barrier function elements and mast cell interactions in the intestinal mucosa. Illustration of the potential mast cell interactions
in the regulation of barrier function, including epithelial permeability (through TJ modulation and secretory response), recruitment and activation of
other immunocytes, endothelial functions (vascular permeability and blood flow), peristalsis and pain signalling through bidirectional communication
with the nervous system. 5HT3R, 5-hydroxytryptamine receptor; AJ, adherens junction; CRFR1/2, CRF receptors 1 and 2; CNS, central nervous system;
CRF, corticotropin-releasing factor; D, desmosome; ENS, enteric nervous system; GM-CSF, granulocyte and monocyte colony stimulating factor; IFN-γ,
interferon gamma; Igs, immunoglobulins; IgE, Immunoglobulin E; IgG, Immunoglobulin G; IgLC, immunoglobulin free-light chains; ILs, interleukins;
LT, leukotrienes; PAR2, proteinase-activated receptor-2; PGD2, prostaglandin D-2; SCF, stem cell factor; TNF-α, tumour necrosis factor alpha; TLR,
toll-like receptor; TJ, tight junction.
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several limitations, including poor design, small sample size and
selection bias. Likewise, ketotifen has been recently proven to
increase the sensory threshold, leading to improved visceral per-
ception, especially in the hypersensitivity IBS group.103 Although
preliminary, there is some indication of the clinical benefit of keto-
tifen and the tryptase inhibitor APC 2059 in UC.104 105 Our
group has recently finished an open trial (awaiting publication)
and a consecutive double-blind, placebo-controlled, clinical assay,
with prolonged (6 months) oral administration of DSCG, with
promising results in the control of main clinical manifestations
in patients with IBS-D (Gastroenterology 2015;148(Suppl 1):
S-494).106 In addition, small studies have shown improvement in
GI symptoms with DSCG therapy in systemic mastocytosis.107

However, the mechanisms by which MC stabilisation could inter-
fere with IBS clinical response have not been clearly delineated.

Other interventions that block the effects of MC mediators and
improve GI symptoms should be considered. In this sense, anti-
inflammatory treatment with mesalazine appeared to show
improvement in symptom perception in unselected patients with
IBS in a small proof-of-concept randomised, double-blind,
placebo-controlled trial, in which, in addition, a 36% decrease in
MC numbers and a reduction of the number of total immune cells
and T cells was observed in the colonic mucosa.108 However, two
subsequent large clinical trials differ in the clinical benefit of mesa-
lazine in IBS,109 110 and the effect of mesalazine on MC counts
and degranulation was not confirmed.110 Furthermore, there was
no effect of mesalazine on 5-HTcontaining enterochromaffin and
CD68 cell numbers, although there was a significant increase in
CD3 count in the mesalazine group.110 In further reinforcing the
role of MC activation in the origin of FGID manifestations, it is
important to note that heartburn, cramping, nausea, abdominal
pain and diarrhoea are the second most common complaint of
patients with mastocytosis, and that H2-histamine receptor
antagonists have been quite effective in controlling these symp-
toms.56 98 111 A recent proof-of-principle clinical trial confirmed
the clinical relevance of these findings showing improvement of
abdominal pain and global relief by the H1R antagonist ebastin in
patients with IBS (Gastroenterology 2013;144(Suppl 1):S-160).112

Palmitoylethanolamide and other inhibitors of cannabinoid recep-
tors seem efficacious in controlling pain, motor disturbances and
inflammation in animal models through modulation of neuronal
and non-neuronal cells, including MCs113 114 Slow release of
vitamin C may be also helpful as it increases degradation of hista-
mine and inhibits MC degranulation in doses not superior to
750 mg/day.111 Natural flavonoids (fisetin, kaempferol, quercetin,
rutin, luteolin) and the active alkaloid berberine inhibit the medi-
ator release of MCs in vitro115 and protect intestinal epithelial
barrier.114 While some of these products have been shown to be
useful in cardiovascular health117 and cancer,118 their clinical effi-
cacy in FGIDs has not been established. There is some evidence of
symptomatic response to specific diets in FGIDs, such as low
FODMAP and gluten-depleted food.20 However, there is no
support for the role of MCs in this symptomatic response with the
exception of the benefit after individualised exclusion of foods in
FGIDs suffering food allergy.

Finally, the development of more specific and safe blockers or
modulators of IgE, IgG or other activation pathways of MC acti-
vation, including pathways involved in the selective release of
mediators, may offer therapeutic advantages, although their
benefit remains to be established.

CONCLUSION
Current evidence implicating MCs in the pathogenesis and
pathophysiology of FGIDs, particularly in IBS, and the

contribution of their activation and released mediators to the
development of cardinal manifestations, such as epigastric and
abdominal pain, and altered defecation is robust, and supports
the targeting of MCs in the management in FGIDs.
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