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ABSTRACT
The gut-derived incretin hormone, glucagon-like peptide
1 (GLP-1) lowers postprandial blood glucose levels by
stimulating insulin and inhibiting glucagon secretion.
Two novel antihyperglycaemic drug classes augment
these effects; GLP-1 receptor agonists and inhibitors of
the GLP-1 degrading enzyme dipeptidyl peptidase
4. These so called GLP-1 based or incretin based drugs
are increasingly used to treat type 2 diabetes, because
of a low risk of hypoglycaemia and favourable effect on
body weight, blood pressure and lipid profiles. Besides
glucose control, GLP-1 functions as an enterogastrone,
causing a wide range of GI responses. Studies have
shown that endogenous GLP-1 and its derived therapies
slow down digestion by affecting the stomach, intestines,
exocrine pancreas, gallbladder and liver. Understanding
the GI actions of GLP-1 based therapies is clinically
relevant; because GI side effects are common and need
to be recognised, and because these drugs may be used
to treat GI disease.

INTRODUCTION
The incretin hormone glucagon-like peptide 1
(GLP-1) is secreted by the gut in response to nutri-
ent ingestion. It enhances insulin secretion by the
pancreatic islet cells and inhibits glucagon secre-
tion, thereby lowering postprandial blood glucose
levels.1 Two novel drug classes were developed to
augment these responses and target hyperglycaemia
in type 2 diabetes (T2DM): GLP-1 receptor ago-
nists (GLP-1RAs) and inhibitors of the GLP-1
degrading enzyme, dipeptidyl peptidase 4 inhibitors
(DPP-4Is) (table 1). Based on their pharmacokinetic
profiles, GLP-1RAs are classified into short-acting
and long-acting agents. At present, these GLP-1 (or
incretin) based drugs are widely used as second-line
treatment for T2DM, after metformin has failed.2

Apart from contributing to the enteroinsular
axis, GLP-1 is involved in several other processes.
Thus, GLP-1 based therapies have extrapancreatic
effects including early satiety, weight loss, increased
insulin sensitivity, blood pressure lowering and
improved lipid profiles.3 These actions have been
extensively advocated, because of potential cardio-
vascular benefits. Less attention has been given to
the GI effects of GLP-1 and associated therapies.
By delaying a range of digestive processes, these
responses contribute to glucose lowering.4

Endogenous GLP-1 reduces proximal GI motility,
whereas pharmacological concentrations influence
the physiology of the stomach, intestines, exocrine
pancreas, gallbladder and liver.
Understanding the GI effects of these drugs is of

clinical importance. First, GLP-1 based drugs may

be employed to treat GI disorders, as emerging evi-
dence indicates that they are beneficial in, for
instance, non-alcoholic fatty liver disease (NAFLD),
IBS and short bowel syndrome. Second, they often
cause GI complaints, mostly nausea, constipation
and diarrhoea. With their increasing prescription
rate, such side effects will be frequently encoun-
tered and need to be recognised. Finally, concerns
have been raised that GLP-1 based therapies may
induce pancreatitis and pancreatic cancer.
In order to understand the GI implications of

GLP-1 based therapies, it is necessary to return to
the physiological basis. This review will provide
insight in the underlying mechanisms of GLP-1 and
GLP-1 based therapies and discusses the potential
beneficial and adverse effects of these new drugs on
each GI organ system.

GLP-1 PHYSIOLOGY
As the name suggests, GLP-1 is homologous to glu-
cagon, sharing the precursor proglucagon. Alternate
splicing leads to glucagon production in the pancre-
atic α-cells and GLP-1 in the enteroendocrine
L cells.5 L cells are present throughout the intestine,
but predominantly in the distal ileum. These cells
are triggered to secrete GLP-1 by the presence of
nutrients (mostly glucose and fat), as well as by bile
acids (figure 1).6–8 Already minutes after a meal,
plasma GLP-1 levels start to rise, peaking after 2 h.
Since GLP-1 secretion starts prior to the arrival of
nutrients to the ileum, a feed-forward loop must be
present. This indirect mechanism seems to involve
neuronal pathways. For instance, blockage of the
acetylcholine receptor of L cells by atropine inhibits
this early GLP-1 secretion in humans.9

The actions of GLP-1 are thought to be effectu-
ated by the GLP-1 receptor (GLP-1R), which is
present in numerous organs (figure 2).10 11

However, when this receptor is antagonised by
exendin (9–39), some effects still pertain, suggesting
involvement of additional receptors.12 After meals,
GLP-1 levels quickly return to baseline. Rapid deg-
radation by dipeptidyl peptidase 4 (DPP-4) and
renal clearance of GLP-1 and its metabolites
result in a half-life of 1–2 min.13 14 Only 10–15%
of the endogenous GLP-1 enters the circulation
(figure 1).15 Given this low systemic concentration,
indirect receptor stimulation through the vagal
nerve was postulated. Indeed, in animals and
humans, vagal blocking diminished the effects of
GLP-1.16 17

Incretin and enterogastrone
Endogenous GLP-1 stimulates pancreatic insulin
secretion in a glucose-dependent manner. As such,
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it is involved in the so called ‘incretin effect’, meaning higher
insulin release after oral glucose intake, than after intravenous
glucose administration. Its potency is demonstrated by blockage
of the GLP-1R, which results in a 50–70% decrease in insulin
secretion after oral glucose intake.18–20 In addition, GLP-1 may
also serve as an enterogastrone, a hormonal mediator of the
ileal brake phenomenon.21 This mechanism guards the distal
intestine from caloric overload, by reducing GI transit, gastric
acid secretion, pancreatic exocrine excretion and gallbladder
emptying.22 Several studies using the GLP-1 receptor antagonist
exendin (9–39) revealed an inhibitory role of GLP-1 on prox-
imal GI motility.20 23–25 Some even suggest that the role of
GLP-1 as enterogastrone outweighs its role as incretin in glucose
homoeostasis.26 27

GLP-1 BASED MEDICATION
GLP-1 based drugs mimic and exceed the effects of endogenous
GLP-1 on metabolism and digestion, causing additional changes
in intestinal mucosal proliferation, gallbladder motility, and
hepatic glucose and lipid production (figure 2).28 Two types of
GLP-1 based therapies are in use: incretin mimetics; GLP-1RAs
that bind to the GLP-1 receptor and mimic the action of GLP-1,
and incretin enhancers; DPP-4Is that prolong endogenously pro-
duced GLP-1 activity, and the activity of other hormones that
are degraded by DPP-4 (table 2).

For both antihyperglycaemic drug classes, several agents have
been approved for the treatment of T2DM. The first available
GLP-1RA, exenatide, was based on a peptide extracted from
saliva of the gila monster (Heloderma suspectum). Subsequently,

Table 1 Overview of the registered GLP-1 receptor agonists and DPP-4 inhibitors

Agent
Brand
name Dose

Half-life
(h) Elimination

Renal
insufficiency*

GLP-1 receptor agonists
Short-acting

Exenatide twice daily Byetta Subcutaneous 5–10 μg BID 2.4 Renal, proteolytic degradation Moderate: caution
Severe: NR

Lixisenatide Lyxumia Subcutaneous 10 μg once daily 3.0 Renal, metabolic degradation Moderate: caution
Severe: NR

Long-acting
Albiglutide Eperzan

Tanzeum
Subcutaneous 30–50 mg once weekly 86.4–163.2 Proteolytic degradation NR

Dulaglutide Trulicity Subcutaneous 0.75–1.5 mg once weekly 112 Proteolytic degradation Moderate: caution
Severe: NR

Exenatide once weekly Bydureon Subcutaneous 2 mg once weekly 2.4† Renal, proteolytic degradation NR
Liraglutide Victoza Subcutaneous 1.2–1.8 mg once daily 13.0 Generalised proteolysis; Elimination: renal

(6%); faecal (5%)
Moderate: caution
Severe: NR

DPP-4 inhibitors
Alogliptin Nesina

Vipidia
Oral 25 mg once daily 12.5–21.1 Renal (>70% unchanged) Dose reduction

Linagliptin Trajenta Oral 5 mg once daily 10.0–40.0 Renal (5%); faecal (95%) No adjustment
Saxagliptin Onglyza Oral 5 mg once daily 2.2–3.8 Metabolised to active metabolite, renal

elimination (12–29% unchanged, 21–52%
metabolite)

Dose reduction

Sitagliptin Januvia Oral 100 mg once daily 8.0–24.0 Renal (80% unchanged) Dose reduction
Vildagliptin Galvus

Zomelis
Jalra

Oral 50 mg twice daily (or 50 mg once daily
plus sulfonylurea)

1.5–4.5 Metabolised to inactive metabolite, renal
excretion (22% unchanged)

Dose reduction

All data is based on the products’ summary of product characteristics.
*Moderate and severe renal insufficiency are defined as an estimated glomerular filtration rate of 30–59 mL/min/1.73 m2 and <30 mL/min/1.73 m2, respectively.
†Exenatide once weekly is similar to exenatide twice daily, except for a slower absorption from the subcutaneous space with the once weekly formulation.
DPP-4, dipeptidyl peptidase 4; GLP-1, glucagon-like peptide 1; NR, not recommended.

Figure 1 GLP-1 life cycle. Legend: GLP-1 is secreted from intestinal L cells after direct stimulation of luminal receptors or indirect stimulation
through neuronal pathways. As soon as GLP-1 is released in the portal circulation, degradation by DPP-4 occurs. When GLP-1 reaches the liver, 25%
of the originally secreted GLP-1 is left. Further degradation occurs in the liver and arterial system, and only 15% reaches peripheral organs. Here,
GLP-1 stimulates the GLP-1 receptor. GLP-1 additionally affects target organs through indirect stimulation of the vagal nerve in the portal vein.
DPP-4, dipeptidyl peptidase 4; GLP-1, glucagon-like peptide 1; GLP-1R; glucagon-like peptide 1 receptor.
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synthetic forms, more homologous to human GLP-1, were
developed. The crucial difference between endogenous GLP-1
and GLP-1RAs is the susceptibility for degradation by DPP-4.
GLP-1RAs are resistant to degradation, leading to prolonged
half-lives of 2–160 h. Combined with a high dose administra-
tion, this results in 6–10 times supranatural serum levels.29

Based on their half-lives, GLP-1RAs are classified as short-acting
agents (exenatide twice daily and lixisenatide) and long-acting
agents (albiglutide, dulaglutide, exenatide once weekly and lira-
glutide). GLP-1RAs are administered subcutaneously, ranging
from twice daily to once weekly, but other routes are being
investigated.30

DPP-4Is are taken orally, once or twice daily, while once-
weekly formulations are currently being developed.31 They
inhibit degradation by 80–97%, with half-lives of 2–40 h and
maintain GLP-1 at postprandial levels.29 However, DPP-4
degrades GLP-1, and several other hormones, including glucose-
dependent insulinotropic peptide, glucagon-like peptide 2
(GLP-2) and peptide YY (PYY) (table 2). Hence, DPP-4Is have a
wider range of actions than GLP-1RAs. Because some of these
actions neutralise each other, GI effects are more pronounced
with GLP-1RAs than DPP-4Is.

GI EFFECTS OF GLP-1 BASED THERAPIES
Stomach and duodenum
GLP-1 and GLP-1RAs decrease gastric emptying in healthy
volunteers and patients with diabetes.32 In a variety of studies,
GLP-1 prolongs the lag time, inhibits propulsion waves, stimu-
lates pyloric tone and doubles time to empty 50% of gastric
contents.32–37 It also decreases gastric acid and lipase secretion
by 67% and 36%, respectively.38 39 The underlying mechanisms
for these responses are unclear. Direct stimulation of GI smooth
muscle cells by GLP-1 did not change gastric tone in rats.40

After vagal blocking, the GLP-1 effect on gastric motility was
lost.16 17 25 Combined, these data suggest vagal mediation.

While short-acting agents retain their gastric inhibitory
effects after prolonged treatment, these effects wane signifi-
cantly with long-acting GLP-1RAs, already after 2 weeks.41–43

Tachyphylaxis, due to sustained receptor exposure by long-
acting agents, has been postulated to cause this phenomenon.
However, this theory is mostly based on small studies in healthy
volunteers.44 45

In contrast to GLP-1RAs, DPP-4Is have little to no effect on
gastric motility.24 32 46 47 An explanation for this discrepancy
remains elusive. Some have speculated that the DPP-4I-induced
rise in GLP-1 to postprandial levels is not high enough to cause
gastric inhibition,48 but GLP-1 infusion up to similar levels did
reduce gastric emptying.49 An alternative hypothesis is that
DPP-4Is simultaneously affect other peptides that counteract the
inhibitory effect of GLP-1. For example, degradation of PYY (1–
36) to the more potent gastric inhibitor PYY (3–36) is prevented
by DPP-4 inhibition.50

Clinical implications
Glucose control
A complex interaction exists between glycaemia and gastric
motility.51 Higher glucose levels delay, whereas lower levels
stimulate gastric emptying.52–54 As a result, the inhibitory effect
of GLP-1 on gastric emptying is more pronounced during
hyperglycaemia and reduced during hypoglycaemia.52 53

Conversely, gastric emptying rate is accountable for approxi-
mately 35% of the postprandial glucose excursions.55 56

Consequently, inhibition of gastric emptying by GLP-1 and
short-acting GLP-1RAs reduces postprandial glucose levels.34 57

The significance of this effect was demonstrated in a study
where co-infusion of the prokinetic erythromycin blunted the
inhibiting effect of GLP-1 infusion on postprandial glucose
excursions.58

Figure 2 The effects of GLP-1 on different GI organ systems. Legend: Receptor concentrations are graded from (+) to (+++) and were determined
using validated immunohistochemistry or autoradiography methods.10 11 *effects have only been demonstrated for GLP-1RA, effects of GLP-1
peptide unstudied. Apo-B48, apolipoprotein B48; FFA, free fatty acid; GLP-1, glucagon-like peptide 1.
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Weight loss
While DPP-4Is are weight-neutral, GLP-1RAs (short-acting and
long-acting) induce weight loss in a dose-dependent manner.59

Recently, a high-dose preparation of the long-acting GLP-1RA
liraglutide (3.0 mg) has been approved for weight reduction.60

Mechanisms underlying this weight loss are still incompletely
understood. A GLP-1RA-mediated reduction in gastric emptying
was postulated to be responsible for decreased appetite.
However, the waning effect of tachyphylaxis and reduced
fasting appetite suggest other, additional mechanisms.61 Likely,
central neurological mechanisms are involved. Preclinical data
show that GLP-1 reduces homeostatic and reward-associated
food intake and, in humans, GLP-1 affects brain areas related to
feeding and satiety.62 Yet, in a recent study, liraglutide reduced
central nervous activation initially, but no longer after 12 weeks
of treatment, while self-reported hunger scores remained sup-
pressed.63 Unfortunately, effects on gastric emptying were not
measured in this study.

Functional dyspepsia
Functional dyspepsia is characterised by delayed gastric empty-
ing, decreased gastric accommodation and increased visceral

sensitivity.64 In theory, the inhibitory effects of GLP-1RAs on
motility could worsen dyspeptic symptoms (tables 3 and 4). On
the other hand, their increase in gastric accommodation and
decrease in visceral perception may relieve symptoms.36 65

Unfortunately, no clinical studies have been performed regard-
ing the effects of GLP-1RAs in this patient group.

Dumping syndrome
In case of dumping, the gastric inhibitory effects of GLP-1 may
slow down transit and thus reduce the hyperosmolar fluid chal-
lenge to the proximal intestine, which causes dumping symp-
toms (nausea, dizziness and fatigue after meals66). Inhibitory
effects on small bowel transit (see below) may contribute, and
may additionally reduce abdominal pain and diarrhoea.
Recently, a case series demonstrated beneficial effects of liraglu-
tide in seven patients with dumping syndrome after a gastric
bypass.67 Whether symptoms improved because of reduced
gastric emptying or an earlier insulin peak is unclear. Further
studies are needed to establish the effects of GLP-1 based ther-
apies in this specific patient population.

Gastroparesis
The magnitude by which GLP-1RAs decrease gastric emptying
depends on baseline gastric motility.68 When gastric emptying is
already delayed, GLP-1 seems to have little inhibitory effect and
the glucose-lowering effect appears reduced.68 Thus, in patients
with gastroparesis, a common complication of T2DM,69

GLP-1RAs may be less effective. Moreover, GLP-1RAs may
aggravate symptoms of nausea, vomiting, abdominal pain, early
satiety and bloating in patients with (signs of) gastroparesis.
Manufacturers currently advise not to use GLP-1RAs in such
patients, but evidence is limited and more studies are urgently
needed.

Upper GI side effects
Nausea and vomiting are common side effects of GLP-1RAs,
which are minimised by a dose-escalating initiation.70 They

Table 2 Other peptides degraded by DPP-4 and their actions,
stimulated during DPP-4 inhibition

Peptide Actions

PYY (1–36) Gastric acid secretion ↓
Gastric emptying ↓
GI transit ↓
Electrolyte/water secretion↓
Pancreatic exocrine secretion ↓
Gallbladder contraction ↓

NPY (1–36) GI motility ↓
Electrolyte/water secretion ↓
Intestinal inflammation ↑

GLP-2 (1–33) Gastric acid secretion ↓
Intestinal mucosa growth ↑
Nutrient absorption ↑
Intestinal blood flow ↑
GI transit ↓

GIP (1–42) Intestinal glucose uptake ↑
GI transit ↓

VIP Gastric acid secretion ↓
Electrolyte/water secretion ↓
Nutrient absorption ↓
Bicarbonate secretion ↑
GI transit ↑
Gallbladder contraction ↓

Bradykinin Nociception/pain ↑
Hepatic gluconeogenesis ↓
Gallbladder contraction ↑

SP GI transit ↑
Intestinal chloride secretion ↑
Intestinal inflammation ↑

Prolactin Gastric emptying ↓(♂) /↑ (♀)
Endomorphin-2 GI transit ↓
GRP Gastrin release ↑
Interleukin 2 Intestinal chloride secretion ↑

CLIP Amylase release ↑

In addition to GLP-1, DPP-4 cleaves a number of other peptides and hormones.
Therefore, inhibition of DPP-4 also leads to altered levels and activity of these
substrates. Whether these effects, which were mainly demonstrated in preclinical
models, have a role in patients remains to be demonstrated.
CLIP, corticotropin-like intermediate lobe peptide; GIP, glucose-dependent
insulinotropic peptide; GLP-2, glucagon-like peptide 2; GRP, gastrin-releasing peptide;
NPY, neuropeptide Y; PYY, peptide YY; SP, substance P; VIP, vasoactive intestinal
peptide.

Table 3 Potential GI therapeutic indications for glucagon-like
peptide 1 based therapies

Condition (potential) Mechanisms Level of evidence

Dumping
syndrome

Gastric emptying ↓ Case series67

Functional
dyspepsia

Gastric emptying ↓
Gastric acid secretion ↓

Hypothesised

Constipated IBS Colon circular muscle tone ↓
Visceral sensitivity ↓

Clinical trials: improved
defaecation pattern, pain
relief80 91

Short bowel
syndrome

Gastric and bowel motility ↓ Clinical trials: reduced
diarrhoea, improved
nutritional status93 94

Mucositis and
IBD

Inflammatory parameters ↓
Mucosal apoptosis ↓
Mucosa proliferation ↑

Animal studies: prevention of
loss in mucosal mass in
experimental mucositis89 97

NAFLD Weight ↓
Hepatic insulin sensitivity ↑
Hepatic de novo
lipogenesis ↓
Fatty acid oxidation ↑

Clinical trials: reduction in
steatosis and
steatohepatitis148 155

Cholangiopathies Cholangiocyte proliferation ↑
Cholangiocyte apoptosis ↓
Bile acid production ↓

Hypothesised168

NAFLD, non-alcoholic fatty liver disease.
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occur in at least 25% of patients and, although often short-
lasting, are a major cause for drug discontinuation.71 After
6 months of treatment, nausea remains present in 3% with long-
acting and 9% with short-acting GLP-1RAs.42 71 These numbers
were mostly acquired by self-reporting, but even when a vali-
dated questionnaire was used, liraglutide significantly increased
‘indigestion’ scores, compared with placebo.72 It has long been
suggested that these effects are caused by inhibition of gastric
emptying. This would explain the absence of nausea with
DPP-4Is, and the abating effect with long-acting GLP-1RAs,
because of tachyphylaxis. However, nausea also occurs in fasting
patients73 and its presence is not closely correlated to gastric
emptying inhibition.34 Recent animal studies suggest that central
neurological nausea circuits are involved, but human evidence is
still lacking.74 Also, why these side effects are common after
subcutaneous injection and rare after intravenous administration
is still unresolved.75

Another frequent complaint with GLP-1RAs is (nocturnal)
gastro-oesophageal reflux.72 This seems surprising, since GLP-1
reduces gastric pressure and acid secretion.36 76 Perhaps, GLP-1
(RA)s also reduce gastro-oesophageal sphincter pressure, but this
has not been investigated yet.

Small and large intestines
GLP-1(RA) infusion evidently decreases small bowel activity, as
observed by a reduction in migratory motor complexes in the
fasting state and a reduction in postprandial spiking activ-
ity.32 77 78 The colonic effects of GLP-1 are less clear.32 GLP-1
seems to inhibit colonic motility, as was shown by reduced circu-
lar contractions in full thickness muscular colon strips.79 80

Notably, a reduction in glycaemia tends to increase intestinal
motility, thus the direct inhibitory effect of GLP-1 and
GLP-1RAs are likely to be underestimated in these studies.81

Similar to the gastric responses, the intestinal effects appear to
be indirect and are probably mediated through neuronal
involvement.40 79 82 83

Exogenous GLP-1 affects intestinal motility, and morphology
and absorption. GLP-1RAs and DPP-4Is decrease intestinal
absorption of triglycerides and lower plasma levels of apolipo-
protein B48 and triglycerides.68 84–87 In healthy rodents,
mucosal mass and intestinal length increased after 12 weeks of
treatment with a GLP-1RA, but not with a DPP-4I.88 However,
in an animal model of experimental colitis, DPP-4I did restore
mucosal damage.89 Thus, GLP-1RAs and DPP-4Is seem to have
proliferative effects on intestinal epithelial cells. This combin-
ation of decreased motility and absorption further inhibits
glucose absorption.68 78

Clinical implications
Irritable bowel syndrome
Though contraintuitive, patients with constipation-predominant
IBS (c-IBS) may benefit from GLP-1 effects (tables 3 and 4). In
these patients, symptoms seem to be caused by abnormal con-
tractions of the circular colonic muscles, which are reduced by
GLP-1.79 Indeed, a placebo-controlled trial showed that the
GLP-1RA ROSE-010 improved scintigraphically measured
colonic transit time in patients with c-IBS.80 Furthermore, high-
dose GLP-1 infusion reduced migratory motor complexes and
intestinal motility in patients with IBS.77 Data from animal
studies suggests that GLP-1RAs also decreases visceral sensitiv-
ity.90 In a double-blind randomised prospective trial in humans,
pain relief, assessed with a visual analogue score, was higher
with ROSE-010, as compared with placebo.91 Since T2DM and
IBS frequently coincide, GLP-1RAs might be of double benefit
to these patients.92

Short bowel syndrome
Malabsorption is a frequent problem in short bowel syndrome,
obviously caused by the reduced intestinal absorbent surface.
Loss of the terminal ileum also eradicates the ileal brake mech-
anism, further compromising digestion. Infusion of GLP-1
peptide significantly reduced diarrhoea and faecal excretions in
patients with short bowel, as compared with placebo.93 Similar
findings were observed in five cases for the short-acting
GLP-1RA exenatide twice daily.94 Although not studied, long-
acting GLP-1RAs are probably not as effective, since they have
little effect on gastric emptying. A cause of potential concern is
the inhibiting effect of GLP-1RAs on appetite, since patients
with short bowel syndrome need adequate energy and electro-
lyte intake.93

Effects of DPP-4Is have not been studied in this population,
yet other non-GLP-1-substrates of DPP-4 seem to benefit the
clinical condition and quality of life of this patient group. For
example, GLP-2 improves intestinal absorption and the nutri-
tional status in patients with short bowel syndrome.95 Recently,
the GLP-2RA teduglutide was approved for the treatment of
short bowel syndrome.96 Combined infusion of GLP-1 and
GLP-2 led to greater effects on intestinal absorption, compared
with infusion of either peptide alone, suggesting that DPP-4
inhibition may be highly effective in these patients.93

Mucosal healing in mucositis and IBD
The proliferative effect of GLP-1RAs and DPP-4Is on intestinal
mucosa provides possibilities for treatment of chemotherapy-
induced mucositis. In animal studies, pharmacological levels of
exogenous GLP-1 ameliorated 5-fluorouracil-induced mucositis.97

Although DPP-4Is have no effect on healthy mucosa, the DPP-4I

Table 4 Side effects of GLP-1 based therapies

Frequency

Side effect GLP-1RA DPP-4I Potential mechanism

GI
Nausea +++ ++ Gastric emptying ↓, activation

nausea centres
Vomiting ++ + Gastric emptying ↓, activation

nausea centres
Diarrhoea +++ + Unknown
Constipation ++ + Intestinal motility ↓
Flatulence ++ + Unknown
Gastric reflux ++ +/++ Unknown
Pancreatitis +/− +/− Unknown
Cholelithiasis +/− ? Weight loss, bile acid production

↓, gallbladder motility ↓
Other
Hypoglycaemia* +/++ +/++ Insulin secretion ↑, intestinal

glucose uptake ↓
Nasopharyngitis + + Unknown
Anaphylaxis +/− +/− Immunoreactive
Prerenal failure +/− +/− Dehydration by vomiting, diuresis

↑

Based on the summary product characteristics of all registered GLP-1RA and DPP-4I.
*Predominantly observed in combination with sulfonylurea agents, not with
metformin.
+++, very common (>1/10); ++, common (>1/100); +, uncommon (>1/1000); +/−,
rare to very rare (>1/10 000); −, not present; ?, unknown.
DPP-4I, dipeptidyl peptidase 4 inhibitor; GLP-1RA, glucagon-like peptide-1 receptor
agonist.
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anagliptin restored mucosal damage in an animal model of experi-
mental colitis.89 Also, DPP-4 inhibition increases levels of active
GLP-2 and stromal-derived factor-1α, both of which are involved
in mucosal healing.88 97 These animal studies evidently call for
further investigation.

Currently, there are no data confirming that GLP-1 based
therapies ameliorate IBD. However, administration of
GLP-1RAs or DPP-4Is reduced systemic inflammatory para-
meters.98 99 In addition, GLP-1RAs lower inflammatory activity
in psoriasis.100 This combination of mucosal healing and allevi-
ation of systemic inflammation may bare new possibilities for
treatment of IBD.

Intestinal side effects: constipation and diarrhoea
Many patients experience constipation or, in contrast, diar-
rhoea, while using GLP-1 based drugs.72 101 Constipation may
be caused by a decrease in colonic muscle contractions.79 An
explanation for diarrhoea is lacking. In one study, patients
experienced osmotic diarrhoea, 8 h after administration of
GLP-1.102 Potentially, the intestinal effects of GLP-1 reduce
absorption, thereby leading to increased osmosis. Reduced pan-
creatic exocrine excretion may also play a role, causing malab-
sorption (see below).103 104

Colon carcinoma
Although cell proliferation is beneficial for mucosal healing, it
may also induce dysplasia. In mice with familial adenomatous
polyposis, GLP-1 and GLP-1RAs increased polyp numbers and
size.105 After bariatric surgery, which increases GLP-1 levels, the
incidence of colorectal cancer is elevated.106 Consequently,
GLP-1 based therapies should be used with caution in subjects
at risk for colorectal cancer, until further studies become
available.

Exocrine pancreas
Intravenous infusion of GLP-1 reduces pancreatic exocrine func-
tion in preclinical and human studies.103 104 107 In pigs, GLP-1
reduced bicarbonate secretion.107 Administration to healthy
volunteers led to an immediate decrease in pancreatic trypsin
and lipase secretion of over 40%.103 104 Underlying mechanisms
are incompletely understood. Direct stimulation of acinar cells
by GLP-1 did not affect pancreatic amylase secretion in vitro.108

Again, indirect mediators are likely, possibly through vagal
nerve activation or through the pancreas-stimulating hormones
secretin and cholecystokinin (CCK).39 107 Also, the (GLP-1
induced) gastric effects decrease duodenal acidity, which is a
major stimulus for secretin/CCK secretion. Thus, inhibition of
exocrine secretion may be partly mediated by gastric
responses.103 To date, the influence of GLP-1 based drugs on
exocrine pancreatic function remains unstudied.

Clinical implications
Pancreatitis and pancreatic carcinoma
Soon after their introduction, GLP-1 based drugs were linked to
development of pancreatitis and pancreatic cancer109 (tables 3
and 4). In patients with T2DM using GLP-1 based drugs, a
subtle and asymptomatic increase in plasma lipase and amylase
levels was observed,110 111 suggesting subclinical inflammation
or pancreatic duct obstruction. Findings from animal studies are
conflicting. A handful of studies showed that GLP-1RAs induce
pancreatic inflammation, cellular proliferation and intraepithe-
lial neoplasia (PanIN).112–114 One study found an association
between the DPP-4I sitagliptin and pancreatitis, ductal cell repli-
cation and metaplasia in a rat model of diabetes.115 However,

the majority of animal studies did not find any effect of
GLP-1RAs or DPP-4Is on pancreatic physiology, even with a
240 times increased dose.116–122 Notably, some studies even
suggested that GLP-1RAs decreases inflammation and malignant
degeneration.114 123–125

Few human histological studies are available. In a study in
pancreatic donors, including 12 patients with diabetes without
GLP-1 based therapy, 7 using sitagliptin and 1 exenatide, GLP-1
based therapy was associated with α-cell hyperplasia and PanIN
lesions.126 However, re-analyses showed that the treatment and
control groups in this study were severely mismatched, which
probably induced confounding.127 128 A recent study has
demonstrated the absence of the GLP-1R on human pancreatic
ductal cells,10 which contradicts the hypothesis that GLP-1R
activation leads to ductal cell proliferation.113

Clinical data are available from pharmacovigilance studies,
database studies and randomised clinical trials (RCTs).
Pharmacovigilance studies have shown associations between
GLP-1RAs and DPP-4Is and acute pancreatitis and pancreatic car-
cinoma.109 However, since these studies depend on spontaneous
reporting by clinicians, they become notably unreliable when a
certain side effect receives media attention, as happened in this
case. Additionally, they lack information on confounders.
Indeed, patients with T2DM often have concomitant risk factors
for pancreatitis, including obesity, long-standing disease and use
of comedication. Importantly, these factors are likely to be more
present in patients with an indication for GLP-1 based therapy.

In contrast, healthcare databases are able to correct for poten-
tial confounding. These did not show a relation between GLP-1
based therapies and pancreatic adverse events,129–134 except for
a single study. In this case, a combined analysis of exenatide and
sitagliptin was performed.135 When each drug was analysed sep-
arately, however, no association with pancreatitis was found.
Four recent large-scale RCTs, axagliptin Assessment of Vascular
Outcomes Recorded in Patients with Diabetes Mellitus -
Thrombolysis in Myocardial Infarction (SAVOR-TIMI 53) (saxa-
gliptin), Examination of Cardiovascular Outcomes with
Alogliptin versus Standard of Care in PAtients with Type 2
Diabetes Mellitus and Acute Coronary Syndrome (EXAMINE)
(alogliptin), Trial to Evaluate Cardiovascular Outcomes After
Treatment with Sitagliptin (TECOS) (sitagliptin) and Evaluation
of Lixisenatide in Acute Coronary Syndrome (ELIXA) (lixisena-
tide), which investigated the cardiovascular safety of DPP-4Is
and GLP-1RAs, did not identify an increased risk of pancreatitis
or pancreatic cancer.136–139 Notably, a trend towards an
increased incidence of acute pancreatitis with sitagliptin was
seen (0.3% vs 0.2% with placebo, p value 0.066).138 However,
these trials did not have sufficient power and follow-up to inves-
tigate rare side effects. A meta-analysis did not find any associ-
ation with acute pancreatitis, although the most recent studies
were not included and an update is needed.140

Recently, the regulatory authorities have reviewed all available
preclinical and clinical evidence, and found no causal associ-
ation between GLP-1 based therapies and pancreatic adverse
events.141 Yet, all studies combined, evidence is still scarce and
the follow-up time of current studies may be too short for the
development of pancreatic cancer. Thus final conclusions cannot
be made. Until further data become available, it is highly recom-
mended not to use these agents in patients with a (family)
history of pancreatic disease.

Liver and biliary system
GLP-1 induces several metabolic changes in the liver, adding to
lower glucose and lipid levels. Independent from insulin and
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glucagon, GLP-1 stimulates hepatic glycogen storage, while sup-
pressing gluconeogenesis.142 143 It increases mitochondrial deg-
radation of fatty acids and inhibits triglyceride
production.144 145 In addition, GLP-1 influences bile metabol-
ism.87 It lowers bile acid production and increases excretion,
thereby lowering the bile acid exposure of hepatocytes.146

In vitro, GLP-1 and the GLP-1RA exendin-4 increase cholangio-
cyte proliferation and reduce apoptosis.147 Moreover, a single
dose of exenatide decreased CCK-induced gallbladder contrac-
tions in healthy humans.28 Combined, these biliary effects may
potentially prevent secondary biliary cirrhosis in patients with
cholangiopathies.

Clinical implications
Non-alcoholic fatty liver disease
GLP-1 based therapies seem to be beneficial in NAFLD and
non-alcoholic steatohepatitis (NASH) (tables 3 and 4). In several
animal models, GLP-1 based therapies decreased steatosis and
hepatic damage.148 Evidence in humans is less conclusive.
Studies showed a reduction in transaminase levels and
spectroscopy-measured steatosis, after treatment with GLP-1RAs
or DPP-4Is in patients with T2DM and ultrasonography-proven
or biopsy-proven NAFLD.149–152 Likewise, on histology, 1 year
of treatment with sitagliptin improved NASH severity.153

However, none of these trials had an adequate control group,
precluding definite conclusions. Three recent RCTs are of inter-
est. In patients with T2DM, insulin glargine reduced
MRI-measured hepatic fat, while liraglutide had no effect.154

Sitagliptin reduced steatosis significantly more than sulfonylurea
derivates.155 In patients with biopsy-confirmed NASH (with or
without diabetes), 48 weeks of liraglutide treatment was asso-
ciated with histological resolution of steatohepatitis.156

The mechanisms underlying the effects of GLP-1 based ther-
apies on NAFLD remain speculative. Steatosis is induced by
obesity and insulin resistance, while inflammatory cytokines,
bacterial endotoxins, mitochondrial dysfunction and/or endo-
plasmic reticulum stress further lead towards steatohepati-
tis.157 158 As GLP-1RAs and DPP-4Is increase hepatic
insulin sensitivity, this may explain the beneficial effect on
NAFLD.159–162 GLP-1-induced improvement of hepatic trigly-
ceride handling probably also plays a role. Furthermore,
GLP-1RAs and DPP-4Is reduce hepatocyte endoplasmic reticu-
lum stress163 164 and inflammatory cytokines,164 165 both
involved in NASH development.

Cholelithiasis
High-dose liraglutide treatment has been related to increased
occurrence of cholelithiasis and cholecystitis in studies, investi-
gating this drug as weight-reducing agent.166 The underlying
mechanism remains unclear, but may involve altered bile acid
production and excretion, decreased gallbladder emptying or
liraglutide-induced weight loss.

CONCLUSIONS AND FUTURE PERSPECTIVES
The GLP-1 based drugs, GLP-1RAs and DPP-4Is, are increas-
ingly used to treat T2DM. Apart from their insulinotropic
effects, their GI effects provide therapeutic possibilities for a
wide scale of GI diseases, including functional dyspepsia,
dumping syndrome, IBS, IBD, short bowel syndrome, NAFLD/
NASH and cholestatic disorders. Since digestive disorders fre-
quently coincide with T2DM, GLP-1 based drugs may have
added benefits in these patient groups.

The recent registration of liraglutide for weight loss confirms
the safety of these agents in normoglycaemic subjects, and

creates possibilities for a more general application in GI disease.
However, evidence is still mechanistic in nature, and not solid
enough to direct clinical care. To gain approval for such indica-
tions, more studies are needed, which will take time. While
results from ongoing studies on NAFLD are eagerly awaited
(clinicaltrials.gov: NCT01237119, NCT02147925 and
NCT01744236), large-scale RCTs with adequate control groups
are needed to establish safety and efficacy for other applications.

On the other hand, GLP-1 based therapies frequently cause
GI side effects, such as nausea, constipation and diarrhoea,
which need to be recognised. Such side effects may limit the use
of these drugs in patients with pre-existing GI symptoms, which
are common; in a self-reported study, nausea, heartburn, early
satiety, diarrhoea and constipation were all more prevalent in
patients with diabetes than in controls.167 Also, reports of
serious adverse events (ie, acute pancreatitis, pancreatic cancer)
need to be acknowledged. Although an increased risk was never
proven, these issues need to be clarified, before GLP-1 based
therapies can be advocated for treatment of GI disorders.

Finally, to enhance patient comfort, respiratory and oral
administration routes of GLP-1RAs are currently being devel-
oped. Whether these agents will exert similar metabolic and GI
effects needs to be investigated. Hypothetically, oral GLP-1RA
could reach high portal levels, and thus be extra beneficial for
NAFLD. Inhalation of (very) short-acting GLP-1RA could
strongly and briefly reduce gastric emptying, and thus be benefi-
cial for dumping syndrome.

In conclusion, understanding the GI actions of GLP-1 based
therapies is clinically relevant for diabetologists and gastroenter-
ologists, because GI side effects are common and need to be
recognised, and because these drugs may potentially be applied
to treat GI disease.
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