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Abstract
Objective  Barrett’s oesophagus is a premalignant 
condition that occurs in the context of gastro-
oesophageal reflux. However, most Barrett’s cases 
are undiagnosed because of reliance on endoscopy. 
We have developed a non-endoscopic tool: the 
Cytosponge, which when combined with trefoil factor 
3 immunohistochemistry, can diagnose Barrett’s 
oesophagus. We investigated whether a quantitative 
methylation test that is not reliant on histopathological 
analysis could be used to diagnose Barrett’s oesophagus.
Design  Differentially methylated genes between 
Barrett’s and normal squamous oesophageal biopsies 
were identified from whole methylome data and 
confirmed using MethyLight PCR in biopsy samples 
of squamous oesophagus, gastric cardia and Barrett’s 
oesophagus. Selected genes were then tested on 
Cytosponge BEST2 trial samples comprising a pilot 
cohort (n=20 cases, n=10 controls) and a validation 
cohort (n=149 cases, n=129 controls).
Results E ighteen genes were differentially methylated 
in patients with Barrett’soesophagus compared with 
squamous controls. Hypermethylation of TFPI2, TWIST1, 
ZNF345 and ZNF569 was confirmed in Barrett’s biopsies 
compared with biopsies from squamous oesophagus 
and gastric cardia (p<0.05). When tested in Cytosponge 
samples, these four genes were hypermethylated in 
patients with Barrett’s oesophagus compared with 
patients with reflux symptoms (p<0.001). The optimum 
biomarker to diagnose Barrett’s oesophagus was 
TFPI2 with a sensitivity and specificity of 82.2% and 
95.7%, respectively.
Conclusion  TFPI2, TWIST1, ZNF345 and 
ZNF569methylation have promise as diagnostic 
biomarkers for Barrett’s oesophagus when used in 
combination with a simple and cost effective non-
endoscopic cell collection device.

Introduction
Barrett’s oesophagus is a metaplasia of the normal 
stratified squamous epithelium of the distal oesoph-
agus to a columnar epithelium, which generally 
occurs in individuals with chronic exposure to 
gastric acid and bile reflux. This metaplasia has been 
shown to be a risk factor for oesophageal adenocar-
cinoma (OAC) which, unless detected early, has an 
overall mortality above 80% at 5 years.1 2 Moreover, 

in the western world, the incidence of OAC has 
rapidly increased in recent decades, such that it now 
constitutes more than 50% of cases of oesophageal 
cancer,3–6 making diagnosis of Barrett’s oesophagus 
all the more pertinent.

The clinical relevance of diagnosing Barrett’s 
oesophagus lies in the opportunity for early detec-
tion of dysplasia and superficial carcinoma, for 
which curative non-surgical treatment options, such 
as radiofrequency ablation and endoscopic mucosal 
resection, have become widely available in the past 
10 years.7

Currently, the diagnosis of Barrett’s oesoph-
agus relies on endoscopy in patients who are 
referred with symptoms. In the UK and the USA, 
only patients with chronic GORD and multiple 

Significance of this study

What is already known about this subject?
►► Methylation changes occur early in Barrett’s 
carcinogenesis.

►► Hypermethylation of TFPI2 and TWIST1 
genes occurs commonly in cancer including 
oesophageal adenocarcinoma.

►► Barrett’s oesophagus is underdiagnosed due 
to reliance on endoscopy. Non-endoscopic 
cell collection using the Cytosponge has 
potential as a screening tool for Barrett’s 
oesophagus when coupled with a biomarker.

What are the new findings?
►► We have identified 18 genes that are 
differentially methylated in Barrett’s 
oesophagus compared with normal squamous 
oesophagus, some of which are potential 
diagnostic biomarkers.

►► Four methylation markers 
(TFPI2, TRIST1, ZNF345 and ZNF569) can 
detect Barrett’s oesophagus when applied to 
Cytosponge samples.

How might it impact on clinical practice in the 
foreseeable future?

►► This quantitative methylation biomarker has 
promise as a diagnostic tool for Barrett’s 
oesophagus without the need for endoscopy.
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risk factors (at least three of: age 50 years or older, white race, 
male sex and obesity) are currently recommended for screening 
endoscopy by best practice guidelines,8 otherwise it is often an 
incidental finding and the majority of cases are undiagnosed.9 
A fundamental argument against screening arises from the low 
conversion rate of Barrett’s oesophagus to OAC, with one popu-
lation-based pathology study estimating the absolute annual risk 
of OAC associated with Barrett’s oesophagus may be as low as 
0.12%,10 although a meta-analysis suggested a conversion rate of 
0.3%.11 Moreover, endoscopic diagnosis is invasive and expen-
sive and requires expert training, making it unfeasible as a popu-
lation screening tool.

Alternative diagnostic techniques such as office-based trans-
nasal endoscopy and string-capsule video endoscopy12 13 
have been considered, although the problems of expense and 
specialist training remain. Consequently, non-endoscopic 
screening tools have been developed in attempts to overcome 
these cost and training issues. One such tool is the Cytosponge, a 
non-endoscopic cell collection device that comprises a polyure-
thane sponge contained within a gelatine-based capsule, which is 
attached to a thin string. The patient swallows the capsule with 
some water while holding on to the other end of the string that is 
attached to a retainer. The capsule dissolves over a few minutes 
in the proximal stomach; the sponge is then retrieved 5 min later, 
scraping a sample of more than 500 000 cells from the lining 
of the oesophagus in the process, which can then be analysed 
for biomarkers to maximise the accuracy and objectivity of the 
diagnosis.14 15

The Cytosponge has been found to be feasible in the primary 
care setting and acceptable to patients,14 suggesting that this 
inexpensive, minimally  invasive tool may be appropriate as 
a triaging test for general practitioners. Furthermore, initial 
health economic analyses have suggested that the cost of this 
test is favourable when coupled with endoscopic therapy for 
dysplasia.16 The biomarker that has been tested extensively 
to date is an immunohistochemical biomarker, trefoil factor 3 
(TFF3), which is a mucin-associated peptide that has been shown 
to distinguish Barrett’s oesophagus cells from normal squamous 
epithelium and gastric cardia with a sensitivity of 79.9% and 
specificity of 92.4% in a multicentre case–control study.17 The 
sensitivity increases with the length of the segment to 87.2% 
in segments of circumferential Barrett’s oesophagus ≥3 cm 
and is preserved in dysplasia.15 While the accuracy is favour-
able compared with other screening tests,18–20 ideally accuracy 
would be improved further and although an advantage of the 
TFF3 result is its binary nature, it would be ideal if analysis did 
not require paraffin embedding and a pathological examination. 
Therefore, we sought to explore the use of DNA methylation in 
view of promising data in other contexts.21

DNA methylation is a phenomenon whereby a methyl group 
is added to the carbon-5 position of cytosine at CpG sites, which 
consist of a cytosine located adjacent to guanine. Crucially, this 
epigenetic change is thought to influence gene expression and 
hence may be a contributor to oncogenesis. CpG islands, areas of 
DNA with high GC content, have been found to be hypermeth-
ylated in cancer cells.21 Aberrant DNA methylation has been 
identified in a number of tumour suppressor, DNA repair and 
adhesion molecule genes in Barrett’s cells, such as AKAP12,22 
APC23 24 and GPX3.25 26 Such studies have elucidated that 
promoter hypermethylation is commonly an early but progres-
sive aberration in the Barrett’s oesophagus–OAC sequence,27 
suggesting that differential methylation of such genes may prove 
useful as biomarkers in detecting Barrett’s oesophagus and may 
also have value in risk stratification.

The overall objective of this study was therefore to discover, 
test and validate new methylation biomarkers and to test their 
performance when applied to a non-endoscopic cell-collecting 
device—the Cytosponge.

Methods
Identification of differentially methylated genes from 
methylation array
We analysed the beta values from a relevant, publicly available 
dataset generated from an Illumina 27k array analysis.28 We first 
filtered the probes and kept only those that covered gene CpG 
islands. A non-paired Wilcoxon test was applied to determine 
significant differentially methylated genes between normal squa-
mous biopsies and Barrett’s samples with p<0.05.

Cohorts design and ethics
Both biopsies and Cytosponge tissues were selected from the 
BEST2 trial.17 Ethics approval for this study had been obtained 
from the East of England – Cambridge Central Research Ethics 
Committee (No: 10/H0308/71) and registered in the UK Clin-
ical Research Network Study Portfolio (9461). Individual written 
informed consent was obtained for each patient including 
permission to perform additional biomarker research. The 
BEST2 study is registered with ISRCTN, number 12730505.

Cytosponge processing
The stored paraffin blocks from non-dysplastic Barrett’s cases 
and controls (without Barrett’s  oesophagus) from the BEST2 
trial Cytosponges were used as well as standard FFPE blocks 
from endoscopic biopsies. For Cytosponge processing, the entire 
cell pellet is embedded in a single paraffin block as previously 
described.17 Cases were selected from the database to include 
all non-dysplastic BE cases and controls with adequate material 
remaining in the block for a methylation assay. No consideration 
was given to the proportion of columnar cells. Genomic DNA 
was extracted from 8×10 µm sections using Deparaffinisation 
Buffer (Qiagen, Manchester, UK) and the QIAamp FFPE DNA 
Tissue Kit (Qiagen). The protocol was followed as described by 
the manufacturer with the exception that samples were incu-
bated at 56°C overnight instead of the described 1 hour, and 
10 µL of extra Proteinase K was added to the samples roughly 
halfway through the 24-hour incubation.

Bisulfite modification and MethyLight PCR
Extracted DNAs were bisulfite converted by following EZ 
DNA-Methylation Gold kit instructions (Zymo Research, Irvine, 
California, USA). For MethyLight PCR, a TaqMan approach was 
carried out as described by Eads and collaborators.29 Each PCR 
reaction included 1× of LightCycler 480 Probes Master Mix 
(Roche, Welwyn Garden City, UK), 100 µM final concentration 
of probe, 10 µM final concentration of each forward and reverse 
primer, DNAse free water up to 8 µL final volume and 2 µL of 
bisulfate-converted DNA. Both probes and primers were gener-
ated using BEACON software, and the corresponding sequences 
are shown in online supplementary table 1. Primers and probes 
were first tested on a Universally Methylated DNA (UM-DNA) 
(Millipore, Watford, UK) for amplifying methylated DNA only 
after bisulfate modification. Standard curves were generated for 
each gene of interest using a bisulfate converted UM-DNA, and 
a calibrator (corresponds to the 1:100 dilution of UM-DNA) was 
used in all subsequent experiments to allow absolute quantifica-
tion. Each sample was analysed in triplicate, and the methyla-
tion level was calculated as follows: methylation=(A/B)/(C/D), 
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Figure 1  Testing methylation level of gene candidates in a biopsy cohort. The methylation level of 13 genes was assessed by MethyLight PCR in 
five squamous, seven cardia and nine Barrett’s biopsies. Ten out of 13 genes were significantly hypermethylated in Barrett’s biopsies compared with 
normal squamous tissue (*p<0.05; **p>0.01). Only TFPI2, TWIST1, ZNF345 and ZNF569 were specifically hypermethylated in Barrett’s samples and 
not in squamous tissue nor cardia biopsies.

Table 1  Patient demographics of pilot and validation Cytosponge cohorts

Controls Cases Pilot Validation

Characteristic

Pilot cohort Validation cohort

p Value

Pilot cohort Validation cohort

p Value

(Controls vs 
cases)

(Controls vs 
cases)

(n=10) (n=129) (n=20) (n=149) p Value p Value

Age (years, median (IQR)) 48.0 (39.0–61.0) 55.0 (43.0–63.0) 0.2985 66.0 (58.0–75.0) 65.0 (56.0–72.0) 0.4771 0.003 <0.0001

Gender (n (%))

Female 7 (70.0) 72 (55.8) 0.5884 6 (30.0) 27 (18.1) 0.3381 0.09 <0.0001

Male 3 (30.0) 57 (44.2) 14 (70.0) 122 (81.9)

Ethnicity (n (%)) 0.4654 0.6611 0.28 0.2149

White British 9 (90.0) 113 (87.6) 19 (95) 139 (93.3)

Other white background 0 11 (8.5) 1 (5) 5 (3.4)

Asian 1 (10.0) 2 (1.6) 0 5 (3.4)

African 0 2 (1.6) 0 0

Other 0 1 (0.8) 0 0

Body mass index (kg/m2, 
median (IQR))

27.7 (24.0–29.2) 27.4 (24.5–30.4) 0.6531 28.3 (25.2–29.9) 28.4 (25.7–30.8) 0.6143 0.67 0.106

Waist:hip (median (IQR)) 0.87 (0.81–0.88) 0.87 (0.82–0.94) 0.5227 0.92 (0.90–0.95) 0.95 (0.92–0.99) 0.06754 0.002 <0.0001

Hiatus hernia 3 (30%) 46 (35.7%) 0.9722 17 (85%) 118 (79.2%) 0.7557 0.009 <0.0001

Barrett’s length

C (cm) – – 3.0 (0.4–6.3) 2.0 (1.0–5.0) 0.8188

M (cm) – – 5.0 (3.0–7.0) 4.0 (3.0–7.0) 0.7306
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wherein A=value of methylation of gene of interest in each 
sample; B=value of methylation of the gene of interest in the 
calibrator; C=level of amplification of β actin in each sample; 
and D=level of amplification of β actin in the calibrator.

Statistical analysis
To achieve a power of 0.95 (0.05 error) for a large effect size 
(comparable with area under the curve (AUC) of 0.8), we needed 
a minimum of 52 samples, and we therefore used all the non-dys-
plastic and control samples from the BEST2 trial with adequate 
material for analysis. We used the non-paired Wilcoxon test to 
compare the methylation level between Barrett’s oesophagus and 
normal samples. For demographic statistics, the χ2 test was used 

to compare categorical variables,  and the Pearson correlation 
coefficient was calculated between the percentage of gene meth-
ylation and demographic factors. The receiver operating charac-
teristic (ROC) analysis was performed using the pROC package 
to identify sensitivity, specificity and the AUC. The ROC analysis 
was also used to determine the methylation cut-off for each gene 
in the discovery cohort to be applied on the validation cohort.

Results
Differential gene methylation in Barrett’s biopsies compared 
with control tissues
In order to identify differentially methylated genes in 
Barrett’s oesophagus compared with normal squamous tissue, we 
reanalysed a dataset from our laboratory that had originally been 
generated to assess methylation changes in malignant progres-
sion.28 This dataset assessed the methylome of 22 of Barrett’s 
samples (biopsies), 24 OAC samples and also included two squa-
mous oesophageal biopsies as internal control samples. We found 
18 hypermethylated genes in Barrett’s  oesophagus compared 
with normal tissue with a difference in methylation of between 
30% and 75% of methylation and with a p<0.05 (online supple-
mentary figure 1A). Using unsupervised hierarchical clustering, 
the methylation level of these candidates clustered all Barrett’s 

Figure 2  Test and validation of the four gene candidates in a Cytosponge cohort. TFPI2, TWIST1, ZNF345 and ZNF569 were significantly 
hypermethylated in a pilot Cytosponge cohort (A) from patients with Barrett’s oesophagus compared with those from control patients (***p<0.0001). 
The pilot cohort included 20 Barrett’s oesophagus and 10 controls. Results were confirmed in a larger Cytosponge cohort from the BEST2 study (B) 
(***p<0.0001). The validation cohort had 149 Barrett’s oesophagus and 129 controls. (C) ROC curves for selected methylated genes in the validation 
Cytosponge cohort using thresholds identified in the pilot cohort. ROC, receiver operating characteristic.

Table 2  ROC analysis results on the validation Cytosponge cohort

Specificity 
(%)

Sensitivity 
(%) AUC (%) 95% CI

Threshold 
(%)

TFPI2 96.9 78.52 87.7 84.08 to 91.34 0.94

TWIST1 93.02 69.8 81.4 77.1 to 85.72 1.47

ZNF345 100 62.42 81.2 77.31 to 85.11 0.29

ZNF569 99.22 59.06 78.7 75.11 to 83.18 0.03

AUC, area under the curve; ROC, receiver operating characteristic.
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samples together indicating a potential diagnostic value of these 
candidates (online supplementary figure 1B). Four of these genes 
(APC, EYA4, RBP1 and SFRP4) have previously been reported 
to be hypermethylated in Barrett’s oesophagus lending support 
to our candidate gene list.23 30–33 It is also interesting that some 
other genes that had been reported to be differentially methyl-
ated previously (CDX2, B3GAT2 and vimentin) were found to be 
more highly methylated in Barrett’s oesophagus compared with 
normal squamous biopsies that  did not reach statistical signif-
icance (<0.05) and so were not taken forward (online supple-
mentary figure 2).

In order to confirm whether the candidates identified from 
the methylation array were indeed differentially methylated in 
Barrett’s oesophagus compared with normal squamous tissues, 
we first performed MethyLight PCR in an independent biopsy 
cohort comprising nine confirmed Barrett’s samples and five 
normal squamous biopsies. Thirteen out of 18 candidates passed 
primer testing. CCND2, CDKN2B and ZNF625 methylations 
were not significantly different between Barrett’s  oesophagus 
and squamous tissues. The 10 other genes were significantly 
hyper-methylated in Barrett’s oesophagus compared with normal 
squamous tissue (HOXD4, PTRO and RPIB9 with p<0.01 and the 
rest of the genes with p<0.05) (figure 1). Since the Cytosponge 
collects cells from the gastric cardia as well as from oesophageal 

tissues, it is important that any biomarker can also discriminate 
Barrett’s from cardia cells. Therefore, we also assessed the meth-
ylation level of these 13 candidates in gastric cardia tissues. This 
identified four genes, TFPI2, TWIST1, ZNF345 and ZNF569, 
that were hypermethylated in Barrett’s oesophagus but not in 
either of the control tissues (p<0.01) (figure 1) .

Testing the four-gene methylation panel in a Cytosponge 
case: control cohort
To evaluate whether the methylation level of these four genes 
could act as a diagnostic biomarker for Barrett’s oesophagus 
using the Cytosponge, we used two cohorts: a pilot cohort 
(n=10 controls; n=20 Barrett’s  oesophagus) and a validation 
cohort (n=129 controls, n=149 Barrett’s  oesophagus) from 
the Barrett’s Oesophagus Screening trial (BEST2). The BEST2 
trial enrolled patients with reflux symptoms and no endoscopic 
evidence of Barrett’s oesophagus (controls) as well as patients 
with known Barrett’s  oesophagus (cases).17 The demographic 
and clinical characteristics were as expected for the controls 
versus Barrett’s cases, and these characteristics were maintained 
when randomly assigned to the pilot and validation cohorts 
(table 1).

In the pilot cohort, all four genes were hypermethylated in 
the Cytosponge samples from patients diagnosed with Barrett’s 
oesophagus compared with the controls (figure 2A, p<0.001). 
We therefore proceeded to a validation cohort and again 
found that all four genes were significantly hypermethylated in 
Barrett’s oesophagus samples compared with controls (figure 2B, 
p<0.001). An ROC analysis was performed in order to esti-
mate the specificity and sensitivity for each marker separately 
(figure  2C and table  2). ZNF569 had the lowest AUC (0.79) 
with a specificity and sensitivity of 99.2% and 59.1%, respec-
tively (95% CI 75.1% to 83.2%), whereas TFPI2 was the best 
candidate with an AUC of 0.88. Since specificity is critical for a 
diagnostic biomarker in a disease of low prevalence in the popu-
lation, the optimal specificity and sensitivity for TFPI2 were 
96.9% and 78.5%, respectively (95% CI 84.1% to 91.3%).

Relationship of methylation levels to clinical variables
The relationship between the methylation levels of these genes 
and demographic characteristics in the cases are presented in 
table 3. We did not observe any correlation with body mass index 
(BMI) and waist-to-hip ratio. In contrast, there was a significant 
correlation between methylation levels in the gene signature 
panel and patient age ([p<0.05, r=0.18]. This was significant 
when considering genes individually for ZNF345 and TFP12, 
[(p<0.01, r=0.24] and [(p<0.01, r=0.18] respectively), but not 
for TWIST1 nor ZNF569. A significant and stronger correlation 
was also observed for all genes in relation to the circumferential 
and maximal lengths of the Barrett’s segment (C & M) (table 3 
and figure 3). Moreover, we found that there is a linear relation-
ship between sensitivity of the biomarkers and the length of the 
Barrett’s segment (r= (0.94–0.99) and r= (0.99–1.00) for C and 
M respectively), which are both known risk factors for progres-
sion to dysplasia and cancer (online supplementary figure 3).

Discussion
In this study, we have demonstrated that 10 genes are hypermeth-
ylated in Barrett’s biopsies compared with normal squamous 
tissue and these included six novel targets as well as confirming 
some genes previously reported in the literature.30–35 Of these, 
TFPI2, TWIST1, ZNF345 and ZNF569 genes were the most 
differentially methylated in Barrett’s oesophagus compared with 

Table 3  Correlation of identified genes with patient characteristics 
in cases

Gene signature r Pearson p Rho spearman p

Age 0.18 0.019 0.18 0.016

BMI 0.03 0.6555 0.03 0.6865

Waist:hip ratio 0.05 0.5104 0.08 0.2972

C 0.58 <0.0001 0.54 <0.0001

M 0.60 <0.0001 0.60 <0.0001

TFPI2 r Pearson p Rho spearman p

Age 0.18 0.021 0.22 0.004

BMI 0.02 0.7421 0.05 0.5091

Waist:hip ratio 0.05 0.4819 0.06 0.4342

C 0.48 <0.0001 0.51 <0.0001

M 0.50 <0.0001 0.57 <0.0001

TWIST1 r Pearson p Rho spearman p

Age 0.11 0.1473 0.19 0.011

BMI −0.10 0.1814 −0.002 0.9793

Waist:hip ratio 0.06 0.4369 0.08 0.3327

C 0.34 <0.0001 0.44 <0.0001

M 0.39 <0.0001 0.47 <0.0001

ZNF345 r Pearson p Rho spearman p

Age 0.24 0.001 0.25 0.001

BMI −0.02 0.8297 0.05 0.5483

Waist:hip ratio 0.06 0.4418 0.14 0.0749

C 0.56 <0.0001 0.48 <0.0001

M 0.59 <0.0001 0.57 <0.0001

ZNF569 r Pearson p Rho spearman p

Age 0.08 0.2826 0.10 0.1869

BMI 0.06 0.4577 0.06 0.4631

Waist:hip ratio 0.03 0.7327 0.04 0.5744

C 0.45 <0.0001 0.48 <0.0001

M 0.59 <0.0001 0.51 <0.0001

BMI, body mass index; C, circumferential; M, maximal extent of Barrett's.
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neighbouring normal squamous oesophagus and gastric cardia 
tissues that are important for application to the Cytosponge, 
which samples cells from these adjacent sites.

TFPI2 is a tumour suppressor gene that is known to be hyper-
methylated in many tissue types including the gastrointestinal 
tract36–38 and is one of the top 20 genes for detecting early stage 
oral squamous cell carcinoma.39 Its tumour suppressor prop-
erties are due to its inhibitory effects on protease activity, thus 
protecting the tumour cell matrix from degradation and counter-
acting malignant cell invasion and metastasis. Methylated TFPI2 
has been identified as a potential cancer biomarker with partic-
ular relevance to the early detection of cancer. For example, in 
stool samples, it has been shown to distinguish colorectal cancer 
and colorectal adenomas from healthy individuals, with a sensi-
tivity of 76%–89% and a specificity of 79%–93%.40 In squamous 
oesophagus carcinogenesis, methylation of the TFP12 promoter 
was shown to occur early at dysplasia stage (33% of dysplasia 
cases).41 In our study, TFPI2 was the candidate with the best 
sensitivity in both the pilot and validation Cytosponge cohorts 
(85.0% and 78.6%, respectively, AUC 87.7%). This observation 
is consistent with Alvi’s methylome dataset in Barrett’s biopsies, 
although the number of samples was smaller28 (online  supple-
mentary figure 1B).

Similarly, TWIST1 is also known to be hypermethylated 
in various tumour types including bladder and colorectal 
cancers.42 43 We found that although TWIST1 was significantly 
hypermethylated in Barrett’s samples from both pilot and 

validation cohorts, the AUC was lower compared with TFPI2 
(AUC=81.4% for TWIST1).

ZNF345 and ZNF569 are novel methylation markers that 
have not previously been reported to be hypermethylated in 
cancer. ZNF345 is the most specific biomarker with a specificity 
of 100% in both pilot and validation Cytosponge cohorts. This 
is especially important when considering a screening test for a 
disease with a low population prevalence estimated at approxi-
mately 3% in patients with reflux symptoms.14

It is possible that a combination of the biomarkers would 
outperform the individual biomarker analysis. However, this 
would require validation in an independent cohort of patients to 
avoid overfitting the data.

The demographics of our cohort was highly consistent with 
the literature in that Barrett’s cases were more likely to be: older, 
male, with an increased waist:hip ratios and a hiatus hernia.7 44 
It is well known in the literature that increasing age is associated 
with changes in gene methylation status21; however, there was no 
significant difference in the age of our methylation signature-pos-
itive cases and methylation negative cases, confirming that age is 
not a confounding factor. Interestingly, cases that were negative 
for the methylation biomarkers had smaller circumferential (C) 
and maximal (M) lengths of Barrett’s (p<0.001 for both C and 
M). This is in keeping with previous studies that have reported 
a significant correlation between BE segment length and hyper-
methylation of other markers, such as AKAP12 and CHD13, for 
example.22 35 Furthermore, the sensitivity of TFF3 is also affected 

Figure 3  Correlation of gene methylation status and patient age and Barrett’s segment length. Dotplot showing correlation between the 4 
methylation biomarkers (TFPI2, TWIST1, ZNF345, ZNF569) and age, circumferential (C) and maximal (M) Barrett’s lengths. The r- value represents the 
Pearson correlation coefficient for each variable.
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by the length of the Barrett’s  oesophagus in the same cohort 
such that the overall sensitivity (79.9%) increased to 87.2% 
for patients with >3 cm circumferential Barrett’s oesophagus.17 
Similarly, the sensitivity of our methylation signature increased 
from 82.2% to 95% for segments >3 cm (online supplementary 
figure 3). This finding is clinically relevant as it has been well 
documented that long segment BE are more likely to progress 
to OAC.45–52 It is envisaged that risk stratification for malignant 
potential could be performed using additional biomarkers on the 
same Cytosponge sample following evaluation for the Barrett’s 
oesophagus specific biomarker.15

Strengths of this study include the large validation cohort, 
although it should be noted that this was a retrospective anal-
ysis and prospective validation is required. We have shown that 
TFPI2 was hypermethylated in Barrett’s samples. Although the 
focus of this study was non-dysplastic Barrett’s oesophagus, it is 
interesting to note that Kaz et al33 have shown that TFPI2 meth-
ylation persists in high-grade dysplasia and adenocarcinoma. 
Corroborating these findings, using methylation data previously 
produced from our laboratory,28 we observe that methylation 
levels in BE and OAC are comparable (online  supplementary 
figure 4). This is important since one would not want to miss 
dysplasia in a screening setting, and this suggests that methyla-
tion of this gene is preserved in oesophageal carcinogenesis.

An ideal screening test should be easy to perform, acceptable 
to patients and cost-effective. Our studies so far suggest that the 
Cytosponge fulfils these criteria with an excellent safety profile 
in over 2000 patients, high acceptability levels and applicability 
to the primary care setting.14 17 TFF3 is highly specific (92%–
94%) with encouraging sensitivity levels (79.9%) especially in 
longer segments or after a second Cytosponge test (87.2% and 
89.7%, respectively).17 Methylation of TFPI2, TWIST1, ZNF345 
or  ZNF569 has a comparable performance with BEST2, 
although it should be noted that the assays were performed on a 
subcohort due to sample availability. MethyLight PCR is an assay 
that could be semiautomated and implemented in a diagnostic 
laboratory without paraffin-embedding reliance on a patholog-
ical analysis of the slide. It should be noted that any diagnostic 
biomarker requires testing in the primary care cohort for which 
it is intended, and further prospective trials are warranted to 
further test the accuracy and clinical applicability of these meth-
ylation biomarkers.
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