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ABSTRACT
Objective Epidemiological and clinical data indicate
that patients suffering from IBD with long-standing
colitis display a higher risk to develop colorectal high-
grade dysplasia. Whereas carcinoma invasion and
metastasis rely on basement membrane (BM) disruption,
experimental evidence is lacking regarding the potential
contribution of epithelial cell/BM anchorage on
inflammation onset and subsequent neoplastic
transformation of inflammatory lesions. Herein, we
analyse the role of the α6β4 integrin receptor found in
hemidesmosomes that attach intestinal epithelial cells
(IECs) to the laminin-containing BM.
Design We developed new mouse models inducing
IEC-specific ablation of α6 integrin either during
development (α6ΔIEC) or in adults (α6ΔIEC-TAM).
Results Strikingly, all α6ΔIEC mutant mice
spontaneously developed long-standing colitis, which
degenerated overtime into infiltrating adenocarcinoma.
The sequence of events leading to disease onset entails
hemidesmosome disruption, BM detachment, IL-18
overproduction by IECs, hyperplasia and enhanced
intestinal permeability. Likewise, IEC-specific ablation of
α6 integrin induced in adult mice (α6ΔIEC-TAM) resulted
in fully penetrant colitis and tumour progression.
Whereas broad-spectrum antibiotic treatment lowered
tissue pathology and IL-1β secretion from infiltrating
myeloid cells, it failed to reduce Th1 and Th17 response.
Interestingly, while the initial intestinal inflammation
occurred independently of the adaptive immune system,
tumourigenesis required B and T lymphocyte activation.
Conclusions We provide for the first time evidence
that loss of IECs/BM interactions triggered by
hemidesmosome disruption initiates the development of
inflammatory lesions that progress into high-grade
dysplasia and carcinoma. Colorectal neoplasia in our
mouse models resemble that seen in patients with IBD,
making them highly attractive for discovering more
efficient therapies.

INTRODUCTION
Intestinal homeostasis depends on a fine symbiosis
among the epithelium, the immune system and the
commensal bacteria present in the lumen. The
polarised intestinal epithelium, with its mucus layer

Significance of this study

What is already known on this subject?
▸ Loss of the major laminin receptor in

hemidesmosomes, namely the α6β4 integrin,
leads to severe skin barrier defects in mice and
humans.

▸ Genome-wide association studies hint at a
potential implication of basement membrane (BM)
laminins in predisposition to IBD and colorectal
cancer (CRC). Laminin expression and distribution
are altered in patients with IBD and CRC.

▸ Numerous cytokines have been shown to
influence disease progression, along with
interleukin-18 (IL-18), which contributes to the
regulation of goblet cells (GCs) and to the
maintenance of gut barrier function.

▸ Tumour immunosurveillance is thought to be
impaired in patients with IBD with
long-standing extensive colitis.

What are the new findings?
▸ Mice carrying intestinal epithelial cell

(IEC)-specific loss of α6 integrin develop fully
penetrant colitis which spontaneously
degenerates into carcinoma of the rectal
mucosa that is the most intensely subject to
environmental stress.

▸ The onset of colitis is preceded by defective
anchorage of the mutant IECs to the BM due
to loss of hemidesmosomes, which results in a
strong activation of caspase-1 leading to the
secretion of IL-18, known to regulate GC
functions.

▸ Colitis is independent of T and B cell activation,
but relies on increased epithelial secretion of
IL-18 and important accumulation of intestinal
CD11b+ myeloid cells that oversecrete IL-1β as a
consequence of bacterial translocation through
the defective mucus barrier. Broad spectrum
antibiotic treatment partially improves colitis.

▸ Risk of developing dysplasia leading to CRC
relies on the activation of the adaptive immune
response.
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on its apical side and the basement membrane (BM) on its basal
side, plays a central role in establishing the barrier function
essential for symbiotic relationship with the gut microbiota.1–3

Compromising with intestinal homeostasis can lead to patholo-
gies, such as IBD. IBD are relapsing-remitting illnesses, which
can evolve into colorectal cancer (CRC) among patients with
long-standing extensive colitis.4–6 Immune system dysregulation,
mucus layer alterations, aberrant endoplasmic reticulum stress
response and abnormal cell–cell junctions have been linked to
IBD development.1 7 8 However, how interactions mediated by
integrin receptors between the epithelium and its underlying
BM contribute to maintain intestinal homeostasis has been
largely overlooked.9

Major players of these interactions are the hemidesmosomes,
which consist in specific junctions present at the base of all
intestinal epithelial cells (IECs) where the α6β4 integrin inter-
connects the BM laminin-332 to keratin filaments through the
cytoplasmic-linker protein plectin.10 11 Interestingly, several
genetic studies have indirectly linked BM laminins and their
integrin receptors to several intestinal pathologies. First,
genome-wide-association studies have identified the LAMB1
(encoding the laminin β1 chain; association probability between
10−6 and 3×10−8) and LAMC1 (encoding the laminin γ1 chain;
association probability 10−7) loci as susceptibility loci predispos-
ing to IBD12 13 and CRC,14 respectively. Foremost, intestinal
erosions reminiscent to IBD are found in patients suffering from
skin disorders that are caused by hemidesmosome defects.15

Conversely, patients with IBD may develop skin lesions such as
psoriasis,16 a skin inflammatory defect observed in mice lacking
α6 integrin in basal keratinocytes.17

To investigate the potential role of α6β4 integrin in intestinal
homeostasis, we generated two mouse models carrying either a
targeted deletion of the integrin α6 gene (Itga6) in IECs, named
the α6ΔIEC line or a tamoxifen (TAM)-inducible deletion, named
the α6ΔIEC-TAM line. Strikingly, all α6ΔIEC and α6ΔIEC-TAM mutant
animals developed long-standing extensive colitis. Foremost,
inflammatory lesions spontaneously and progressively degener-
ated into infiltrating colorectal adenocarcinomas in α6ΔIEC mice,
as well as in the α6ΔIEC-TAM model. Characterisation of both
models demonstrates the central protective role of the epithelial

cell/BM connection in preserving intestinal homeostasis and in
preventing the risk of colitis-associated cancer.

RESULTS
Epithelial-specific genetic ablation of Itga6 affects intestinal
hemidesmosomes
To assay the role of α6 integrin in intestinal homeostasis, we
first induced a complete deletion of Itga6 in IECs using the
Cre-lox approach18 (α6ΔIEC; figure 1A and online supplemen-
tary figure S1). The resulting animals displayed abnormally
loose and viscous stools, and frequently developed a rectal pro-
lapse (figure 1B). To determine whether this phenotype was
linked to hemidesmosome alterations, we examined the β4
integrin chain, the α6 hemidesmosome heterodimerising partner
and found that both chains were removed from IECs at all
stages examined (see figure 1C–E and online supplementary
figure S2A, B). By contrast, epithelial expression of integrin β1,
which can also heterodimerise with other α chains, did not vary
(see online supplementary figure S2C), confirming that defects
observed in these mice originated from a loss of the α6β4 integ-
rin in the epithelium.

We next tested if Itga6 depletion in IECs impaired the assem-
bly of the hemidesmosome component plectin and subsequently
of keratins 8/18 (K8/18). Plectin, which interacts with the β4
integrin cytoplasmic domain, was detected in hemidesmosomal
basal patches and at the apical membrane of control IECs
(figure 1F). In α6ΔIEC mice, plectin staining was strongly
reduced basally but not apically; loss of basal plectin was
already observed in late α6ΔIEC embryos (see figure 1F and
online supplementary figure S2D). Moreover, the K8/18 inter-
mediate filament dimers, which normally are concentrated in
the plectin patches basally, were diffusely distributed throughout
the cytoplasm (figure 1G). As a result, the shape of epithelial
cells appeared less columnar and more cuboidal than in controls
(figure 1G). Despite these strong defects, the epithelium
retained a characteristic polarised distribution of the apical
marker villin, a structural component of microvilli and the tight
junction marker cingulin/MAP115 (see online supplementary
figure S3). Hence, like in the skin where it nucleates type I
hemidesmosomes (containing BP180 and BP230),17 19–21 α6β4
integrin is essential for the assembly of type II hemidesmosomes
(that are lacking BP180 and BP230) present in the intestine, but
does not contribute to epithelial polarity.

Loss of intestinal hemidesmosomes impacts on gut barrier
function
Loss of α6β4 integrin in the skin affects epithelial integ-
rity.17 19–21 In the mutant intestine, collagen IV and plectin
costaining revealed that the epithelial layer tends to detach
from its BM and the subjacent lamina propria (figure 1F, G),
without affecting the distribution of the hemidesmosomal
laminin γ2 chain (figure 1H). From 3 weeks after birth, areas
of epithelial detachment were observed throughout the mutant
intestine (see figure 1I and online supplementary figure S4),
suggesting that the disruption of hemidesmosomes results in
epithelium weakening and loss of firm anchorage to the BM.
To confirm these observations, we used a modified method of
IEC dissociation22 in which control and mutant epithelium
were subjected to ethylenediaminetetraacetic acid (EDTA)
treatment and gentle agitation to assess their ability to resist a
slight mechanical stress. Epithelial fragility was significantly
increased in the mutant intestines compared with controls as
early as 2 days postnatal (P2), and became more prominent at
P14 (figure 1J). Alterations affecting the intestinal permeability

Significance of this study

How might it impact on clinical practice in the
foreseeable future?
▸ Our findings reveal that the epithelial barrier/BM connection

plays a critical role in the maintenance of intestinal integrity
and homeostasis, by contributing to the formation of an
efficient epithelial and mucus barrier. Improving weakened
epithelial/BM interactions and restoring a functional mucus
barrier by targeting epithelial IL-18/IL-18R signalling and by
using diet that reduces the mechanical stress may represent
novel therapeutic avenues in IBD.

▸ Our results highlight also the crucial role of the IL-1 family
of cytokines during progression of the inflammatory lesions
into colorectal adenocarcinomas. This work suggests that
tumour progression in IBD could be improved or slowed
down by reducing the inflammatory context mediated by
IL-1/IL-1R with specific drugs or neutralising antibodies.

1749De Arcangelis A, et al. Gut 2017;66:1748–1760. doi:10.1136/gutjnl-2015-310847

Inflammatory bowel disease
 on A

pril 19, 2024 by guest. P
rotected by copyright.

http://gut.bm
j.com

/
G

ut: first published as 10.1136/gutjnl-2015-310847 on 1 July 2016. D
ow

nloaded from
 

http://gut.bmj.com/


are frequently observed in patients with IBD and reflect epithe-
lial barrier dysfunction.23 To examine if such dysfunction
occurred in mutant mice, we quantified intestinal permeability
in vivo by feeding mice with fluorescein isothiocyanate
(FITC)-dextran and measuring FITC levels in the blood
plasma. Intestinal permeability was significantly increased in
α6ΔIEC mice (figure 1K). Thus, α6 integrin loss in IECs impairs
hemidesmosome formation, epithelial morphology and gut
barrier function.

α6ΔIEC Mice develop spontaneous long-standing extensive
colitis
As intestinal barrier defects often lead to inflammation,1 we
examined its potential occurrence in α6ΔIEC mice. We observed
obvious inflammation in all mutants from 6 to 8 weeks of age
as clinically illustrated by loose and/or bloody stools, rectal pro-
lapse and mucus discharge when compared with their control
littermates (see figures 1B and 2A). The intestinal wall appeared
thickened throughout the colorectal region (figure 2B), with a

Figure 1 Efficient deletion of Itga6
in α6ΔIEC mice results in compromised
hemidesmosomes and epithelial
fragility. (A) Strategy to generate an
intestinal epithelium-specific Itga6
knockout (for details, see online
supplementary figure S1A). The Itga6
floxed allele (α6fl) was obtained after
insertion of two loxP cassettes (green
triangles) at the Itga6 30 end including
the TM and the cytoplasmic A and B
(α6A; α6B) exons. Crossing of the α6fl/fl

mice with the transgenic Villin-Cre line
results in a truncated Itga6 copy,
denoted α6ΔIEC. (B) Morphology of the
colorectal region in 15-week-old WT
and α6ΔIEC mice. White stars indicate
stools. Scale bars, 5 mm. (C–H)
Immunodetection of hemidesmosome
markers in the colon of E16.5 embryos
(C and D) and in intestinal segments of
mice aged 9–16 weeks (E–H); (E)
rectum; (F and G) jejunum; (H) colon;
4’,6-diamidino-2-phenylindole (DAPI)
marks nuclei (blue). (C and E)
α6-integrin chain and (D) β4-integrin
chain (green) with the mucin Muc2
(red). The remaining signal in (C and E)
corresponds to α6 integrin in blood
vessels, confirming the specificity of the
deletion in the epithelium. (F) Plectin
and (G) K8/K18 intermediate filaments
(green), with collagen IV (red). (H)
Laminin-γ2 chain (green). White arrows,
epithelium/lamina propria interface;
yellow arrowheads, hemidesmosome
patches; stars, areas of epithelial
detachment in mutants. Scale bars,
50 mm. (I) Histological analysis of the
colon from 3-week-old mice; bracket,
detached cells from the surface
epithelium. Scale bar, 100 mm. (J)
Scattered dot plots showing the protein
concentration of epithelial cell lysates
obtained from small intestinal tissue of
pups aged 2 (P2) and 14 (P14) days
submitted to a detachment assay; error
bars, SD; *p<0.05, **p<0.01. (K)
Scattered dot plots showing the plasma
concentration of FITC-dextran (FD4) as
a measurement of intestinal
permeability in 6-week-old animals fed
with FD4; error bars, SD; ****p<10−4.
A, anus; C, colon; e, epithelium; lp,
lamina propria; lu, lumen; m, muscle
layer; mes, mesenchyme; P, prolapse; R,
rectum; TM, transmembrane; w, weeks;
WT, wildtype.
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histological score worsening from 3 weeks after birth
(figure 2C). Mutant crypts in the distal colon were on average
twice more elongated (figure 2D, F). As early as 3 weeks of
age, the proliferation rate was also significantly increased in
both colon and rectum of mutants but not in the jejunum as
determined by staining for bromodeoxyuridin (BrdU) incorpor-
ation (see figure 2E, G and online supplementary figure S5A).
These features (figure 2) suggested that α6ΔIEC mice develop
spontaneous long-standing extensive colitis from weaning
onwards.

Colitis severity in α6ΔIEC mice is independent of the adaptive
immune response
Studies in mice and humans have strongly suggested that intes-
tinal inflammation results from an impaired innate immune
response to the gut microbiota, which results in dysregulation of
the adaptive immune system.7 8 To examine if inflammation in
α6ΔIEC intestine follows this paradigm, we first defined the
immunological profile by fluorescence activated cell sorting
(FACS) of immune cells isolated from the colonic lamina
propria (referred to as lamina propria mononuclear cells).

Figure 2 α6ΔIEC Mice develop colitis
soon after weaning. (A) Representative
images of WT and α6ΔIEC adult colons
observed by mini-endoscopy. Black
arrow, lesion affecting the mutant
mucosa; arrowheads, presence of
abundant mucinous material in the
lumen of the mutant colon. (B)
Longitudinal H&E stained sections of
the recto-anal region from animals
aged 15 weeks. The bracket in mutants
highlights the hyperplasia in mucosa
and thickened muscle layers
(arrowheads, ulcerated surface). Scale
bars, 500 mm. (C) Histological scores
displayed as scattered dot plots (error
bars, SD) measured in the proximal
and distal colons of WT and α6ΔIEC

mice from 2 to 9 weeks (w) of age.
(D) Transverse H&E stained sections of
the distal colons of WT and α6ΔIEC

mice at 4 weeks. Double arrows, crypt
height. Scale bar, 50 mm. (E)
Immunohistochemical BrdU detection
(brown nuclei) on colon sections of
3-week-old animals; dashed lines and
double arrows, area of expanded
proliferation in the mutant colon. Scale
bar, 50 mm. (F and G) Proliferation
and crypt height measurement in
colons of WT and α6ΔIEC mice aged 2
and 3 weeks, and adult stages
displayed as scattered dot plots (error
bars, SD). (F) Quantification of crypt
height. (G) Quantification of
BrdU-positive cells. *p<0.05,
**p<0.01. e, epithelium; lu, lumen;
ns, not significant; w, weeks;
WT, wildtype.
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Mutant mice displayed ∼five-fold increase in CD4+ T lympho-
cytes and of several myeloid cells including neutrophils, den-
dritic cells and monocytes (figure 3A, B). Notably, there was a
>40-fold increased recruitment of Ly-6G+/CD11b+ neutrophils
within the colonic mucosa of mutant mice when compared with
controls (figure 3B). By contrast, the number of CD8+ T lympho-
cytes and inflammatory monocytes did not vary (figure 3A, B).
Histological analysis confirmed the presence of extensive immune
cell infiltrates in the mutant colon/rectum/prolapse area (see
online supplementary figure S5B, C). Those were mostly identi-
fied as CD11b+ cells by immunostaining, and were recruited as
soon as 4 weeks (figure 3C, C0). Of note, the recruitment of these
cells was even stronger at 9 weeks (figure 3D, D0).

To formally assess the potential involvement of T lymphocytes
and B lymphocytes on disease onset, we crossed α6ΔIEC mice

with rag1−/− mice, which lack mature B lymphocytes and T lym-
phocytes.24 Remarkably, histopathological analyses revealed that
rag1−/− α6ΔIEC double mutant mice developed inflammation
similar to that of single rag1+/− α6ΔIEC mutants, with the pres-
ence of large immune infiltrates throughout the colorectal
mucosa (see online supplementary figure S5C) and high levels of
CD11b+ myeloid cells (figure 3E, E0). Collectively, these results
demonstrate that the onset of colitis is independent of T lympho-
cyte and B lymphocyte activation.

We next examined whether the inflammation observed in
α6ΔIEC mice was associated with the MyD88 pathway, a major
player of the innate immune response. Colitis occurred similarly
in both MyD88−/− α6ΔIEC and MyD88+/− α6ΔIEC mutant
animals suggesting that MyD88 signalling was not primarily
required to initiate inflammation in α6ΔIEC intestine (see online

Figure 3 Inflammation onset in
α6ΔIEC mice is mediated by myeloid
cells recruitment, independently of the
adaptive immune system. (A and B)
FACS analysis and quantification of
immune cell subpopulations present in
colonic lamina propria extracts from
animals raised in conventional
conditions. LPMCs originate from WT
and α6ΔIEC animals aged 9–15 weeks.
Results are displayed as scattered dot
plots (error bars, SD); each dot
represents the number of positive cells
present in the extract for each animal.
(A) CD4+ and CD8+ T lymphocytes; (B)
Cells of myeloid origin defined as:
neutrophils, Ly-6G+ CD11b+; DC,
Ly-6G− CD11c+ MHC class IIintermediate;
monocytes, Ly-6G− Ly-6C+ MHC class
II−; pro-inflammatory monocytes,
Ly-6G− Ly-6C+ CD11clow MHC class II+

CD64+. (C–E) Immunodetection of
CD11b+ cells (green) in the colon of
WT and α6ΔIEC mice aged 4 (C) and 9
(D) weeks, and of combined rag1+/−

α6ΔIEC and rag1−/− α6ΔIEC animals (E).
Scale bars, 100 mm. (C0–E0)
Quantification of the number of
CD11b+ infiltrating cells per mm2 of
colon from images illustrated in (C–E),
displayed as scattered dot plots (error
bars, SD). (C0) WT and α6ΔIEC mice
aged 3 and 4 weeks; (D0) 9-week-old
WT and α6ΔIEC mice; (E0) combined
rag1+/− α6ΔIEC and rag1−/− α6ΔIEC;
rag1 α6ΔIEC mice were raised in SPF
conditions. **p<0.01. DC, dendritic
cells; e, epithelium; FACS, fluorescence
activated cell sorting; Infl. Mono,
pro-inflammatory monocytes; lp,
lamina propria; LPMCs, lamina propria
mononuclear cells; MHC, major
histocompatibility complex; Mono.,
monocytes; Neutro., neutrophils;
ns, not significant; SPF, specific
pathogen-free; w, weeks.
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supplementary figure S5D). Hence, inflammation onset did not
involve classical toll-like receptor (TLR) pathways going through
MyD88.

Early onset of colitis is linked to epithelial caspase-1
activation and IL-18 secretion in α6ΔIEC mice
To further define the pathways mediating inflammation, we next
examined the levels of well-characterised pro-inflammatory
cytokines involved in IBD, released by colon explants cultured
for 24 hours (see online supplementary materials and methods).
Cytokine screening revealed that IL-1β and IL-18 levels were
the most prominently increased in mutants compared with con-
trols (see figure 4A and online supplementary figure S6A).
Among eight additional cytokines that we assayed, IFNγ, IL-17
and IL-22 levels were also increased in α6ΔIEC mice, though less
prominently (see online supplementary figure S6A, B).

To better characterise the sequence of events occurring during
disease onset, we specifically focused on the timing of IL-1β and
IL-18 increase relative to the earliest abnormalities observed in
mutant mice (see figure 2C–G). In particular, we examined
animals aged 2–3 weeks when the epithelial barrier, the immune
system and the microbiota are progressively established.25 We
observed a clear difference between the initial secretion of both
cytokines, since IL-18 was already significantly increased in the
mutant colons at 2 weeks, whereas IL-1β was not detectable at
this time point (figure 4B). From 3 weeks onwards, the secretion
of both cytokines was significantly increased in the α6ΔIEC

colons (figure 4B).
To identify the most likely cellular source of IL-18 and IL-1β,

we used western blot analysis, to screen their expression in
whole protein extracts (total colon lysates) and in an enriched
epithelial fraction (enriched IECs) obtained by scraping of the
colorectal mucosa (see figure 4C and online supplementary
figure S7). Since both cytokines are produced as inactive forms
(pro-IL-18 and pro-IL-1β) that must be cleaved by caspase-1 to
be active and secreted, we also checked the expression of active
caspase-1 (resulting from pro-caspase-1 cleavage). Expression
levels of pro-IL-18, pro-IL-1β and pro-caspase-1 inactive forms

were similar in wildtype (WT) and α6ΔIEC extracts, regardless of
the stage (2 or 3 weeks) or the source of the extract (total colon
vs enriched IECs) (see figure 4C and online supplementary
figure S7). By contrast, a strong increase of cleaved IL-18 and
cleaved caspase-1 was observed in α6ΔIEC enriched IECs as early
as 2 weeks (figure 4C) and was maintained at 3 weeks (see
online supplementary figure S7), but was barely detectable in
total mutant colon lysates. Cleaved-IL-1β was not or barely
detected.

Altogether, our data establish that IL-18 is specifically acti-
vated in α6 deficient IECs prior to any clinical and histological
signs of colitis, and that its epithelial release precedes the secre-
tion of IL-1β. Furthermore, since the active form of IL-1β was
not detected in the mutant IECs, it suggests that it was probably
produced by immune cells infiltrating the mucosa.

α6ΔIEC Colons display defective mucus barrier
One of the factors exacerbating inflammation in patients with
IBD comes from defects in the mucus layer that protects from
microbial translocation.3 26 Interestingly, very recent data have
linked epithelial IL-18 signalling to mucus production by goblet
cells (GCs) and to GC maturation.27

To examine the properties of the mucus layer in α6ΔIEC mice,
we used periodic acid Schiff/alcian blue (PAS/AB) staining. We
found that the PAS+ GC which faced the lumen displayed a
larger apical compartment or theca in 4-week-old mutant distal
colon (see online supplementary figure S8A–D), as also observed
in keratin K8-deficient mice.28 In addition, the number of PAS+

GC detected at the base of the mutant crypts was significantly
increased, while the average number of PAS+ GC over crypt
height was unchanged (see online supplementary figure S8A–D).
From 6 weeks of age, Muc2 and PAS/AB staining revealed abun-
dant mucus discharge presenting altered properties in the
mutant colonic lumen (see online supplementary figure S8E, F),
although the ratio GC/total epithelial cells was similar (59.0
±4.6% for controls and 59.7±2.7% for α6ΔIEC mice, n=3). At
later stages, the normally bacteria-free inner mucus layer
appeared irregular in α6ΔIEC mice (see online supplementary

Figure 4 Colitis initiation in α6ΔIEC mice is triggered by strong epithelial IL-18 secretion and colitis worsening by IL-1β hypersecretion. (A and B)
Scattered dot plot quantification of IL-1β and IL-18 levels measured by ELISA starting from colon explants of WT and α6ΔIEC mice at 9 weeks (A)
and at 2, 3 or 4 weeks of age (B) (error bars, SD; ns, not significant; *p<0.05, **p<0.01, ***p<0.001). (C) Western blot analysis performed on
protein extracts obtained from an enriched epithelial fraction (enriched IECs) or from whole colon segments (total colon lysates) of 2-week-old WT
and α6ΔIEC mice. Representative blots of three independent experiments performed on at least five animals per group are illustrated. Western blot
with GAPDH and β-Tubulin are presented as loading controls. Casp1, caspase-1; enriched IECs, enriched intestinal epithelial cells; GAPDH,
glyceraldehyde 3-phosphate dehydrogenase; w, weeks.
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figure S8G). To elucidate the potential cause of the mucus
defects, we analysed the distribution of the anion transporter
SLC26A3 and the Na+/H+ exchanger NHE3, described as
being involved in the formation and maintenance of the mucus
layer,29–31 and known to be affected in the K8−/− mutant
mice.28 We found that SLC26A3 and to a lesser extent NHE3
were less abundant at the apical surface of α6ΔIEC colons (see
online supplementary figure S8H, H0), arguing for their involve-
ment in the observed mucus defects in association with the
altered keratin distribution.

Antibiotic treatment improves disease severity
Alterations of the mucus layer can favour a physical interaction
of bacteria with the epithelium.29 30 32 We thus examined the
spatial segregation of the microbiota from the epithelium in the
distal colon, using fluorescence in situ hybridisation (FISH) to
detect bacterial 16S ribosomal RNA, and Muc2-immunostaining
to delineate the mucin layer and the epithelial border. At
3 weeks of age, when histological defects and cytokine levels
were already abnormal, bacteria were clearly physically sepa-
rated from IECs (see online supplementary figure S9A). By con-
trast, bacteria were attached to the mutant colonic epithelial
surface in older diseased mice as judged by the presence of bac-
terial 16S rRNA in direct contact with IECs (see online supple-
mentary figure S9B).

Given the close contacts between bacteria and mutant IECs, we
next assessed whether bacteria had a role in eliciting colitis in

α6ΔIEC mice. We treated 9-week-old animals with a cocktail of
broad-spectrum antibiotics prior to collecting intestinal explants in
order to deplete a large range of bacterial species. Overall, antibio-
tics reduced the levels of IL-1β to those observed in untreated con-
trols and halved those observed for IL-18 (see figure 5A and
online supplementary figure S9C), and had no effects on the levels
of IFNγ, IL-17 and IL-22 (see online supplementary figure S9C).
In addition, antibiotics improved disease severity by reducing the
number of CD11b+ cells infiltrated into the mutant colonic
mucosa (figure 5B), whereas they had no major effect on CD4+ T
cells (figure 5B). Consequently, antibiotics reduced the colitis
histological score in the mutant colon (figure 5C).

Overall, our results show that bacteria play a role in worsen-
ing colitis in α6ΔIEC mice, but disease onset precedes bacterial
attachment to the intestinal epithelial layer. In addition, the fact
that antibiotic treatment only partially restored a normal
healthy mucosa with normal IL-18 levels further supports the
notion that IL-18 plays a key role in triggering inflammation.

α6 Integrin loss in adults recapitulates colitis occurrence
observed in α6ΔIEC animals
To discriminate between direct and indirect effects of α6 integ-
rin ablation, we controlled the timing of Itga6 ablation in IECs
by using the TAM-inducible Cre-ERT2

system (α6ΔIEC-TAM

line).18 We treated adult mice with TAM at 8 weeks—stage at
which animals have a fully mature intestine and immune system
—and analysed them 2 weeks later (figure 6A).

Figure 5 Colitis in α6ΔIEC mice is
partially improved by antibiotic
treatment. (A–C) Scattered dot plot
representations showing the
quantification of cytokine levels
measured by ELISA starting from colon
explants (A), of the CD11b+ and CD4+

cells infiltrating the colonic mucosa
(B), and of histological scores (C), in
9-week-old WT and α6ΔIEC mice
treated with antibiotics (+ATB) or not.
In each scattered dot plot, error bars
represent SD; *p<0.05, **p<0.01,
***p<0.001. (A) ELISA quantification
of IL-1β and IL-18 levels. (B)
Quantification of CD11b+ and CD4+

infiltrating cells per surface of colon.
(C) Colitis histological scores
established in the proximal and distal
colons. +ATB, with antibiotics; ns, not
significant.
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Immunodetection of α6β4 integrin in α6ΔIEC-TAM colons
revealed an efficient and homogeneous removal of the α6 and
β4 signals in the mutant IECs (figure 6B). Interestingly,
α6ΔIEC-TAM mutants displayed colorectal swelling and loose
stools (figure 6C), and an increased intestinal permeability
(figure 6D) similar to those observed in the α6ΔIEC line. To
better define how early molecular signs of colitis arise, we exam-
ined animals at 6, 10 and 15 days post-TAM administration. At
day 6 post-TAM, mutant colons displayed significant epithelial
detachment and an increase in IL-18 secretion (see figure 6E
and online supplementary figure S10A, B), as what also

observed in α6ΔIEC animals (see figures 1I, 4B and online sup-
plementary figure S4B, C). α6ΔIEC-TAM Mutant mice started to
develop hyperplasia (assessed by the proliferative marker Ki-67),
CD11b+ cell infiltration and increased IL-1β secretion at days
10 and 15 post-TAM (see figure 6E–F0 and online supplemen-
tary figure S10A–D), with no difference in T lymphocyte
subsets (figure 6G, H). In line with our previous findings in the
constitutive α6ΔIEC model, antibiotic treatment applied prior
to TAM administration reduced signs of inflammation (see
figure 6E–F0 and online supplementary figure S10), without
reducing epithelial detachment and restoring IL-18 secretion to

Figure 6 Colorectal inflammation occurs quickly after α6 integrin ablation in adult IECs. (A) Experimental procedure of TAM treatment (red arrows
indicate the days of TAM administration) and subsequent analysis (black arrow) of WT and α6ΔIEC-TAM mice, illustrated for the time point 15 days
post-TAM administration. Animal age is indicated in weeks. (A–D and F–H) Eight-week-old WT and α6ΔIEC-TAM mice were treated with TAM and
analysed 15 days after the first TAM gavage. (B) Immunodetection of α6-integrin and β4-integrin chains (green) on colon sections of WT and
α6ΔIEC-TAM. DAPI marks nuclei (blue). Scale bars, 50 mm. (C) Morphology of the colorectal region of WT and α6ΔIEC-TAM mice. Scale bars, 5 mm.
(D) Scattered dot plots showing the plasma concentration of FITC-dextran (FD4) in WT and α6ΔIEC-TAM mice fed with FD4; error bars, SD. (E) ELISA
quantification of the levels of IL-1β and IL-18 secreted by colon explants cultured for 24 hours. Samples were analysed 6, 10 and 15 days after the
first TAM gavage in WT and α6ΔIEC-TAM mice treated with antibiotics or not. Results are displayed as scattered dot plots; error bars, SD; ns, not
significant. (F and F0) Immunodetection (F) and quantification (F0) of CD11b+ cells (green) in the colon of 10-week-old TAM treated WT and
α6ΔIEC-TAM mice, 15 days post TAM gavage. Scale bar, 100 mm. (G and H) Quantification by FACS analysis of the immune cell subpopulations
present in LPMCs of 10-week-old TAM treated WT and α6ΔIEC-TAM mice, 15 days post TAM gavage. (G) CD4+ and CD8+ T lymphocytes; (H) Cells of
myeloid origin defined as Ly-6G+ CD11b+. Results are displayed as scattered dot plots (error bars, SD); each dot represents the number of positive
cells present in the extract for each animal. *p<0.05; **p<0.01; ***p<0.001. A, anus; Asterisks (*), stools; +ATB, with antibiotics; C, colon; Ca,
caecum; d, day; e, epithelium; FACS, fluorescence activated cell sorting; IECs, intestinal epithelial cells; LPMCs, lamina propria mononuclear cells; lp,
lamina propria; lu, lumen; ns, not significant; R, rectum; TAM, tamoxifen; w, week.
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control levels (see figure 6E and online supplementary figure
S10). Thus, α6ΔIEC-TAM mice phenocopied the α6ΔIEC line.

We next aimed at further delineating the molecular signature
of inflammation upon loss of the α6β4 integrin. To this end, we
performed a transcriptome analysis on mRNAs extracted from
the rectal compartment of WT and α6ΔIEC-TAM mice 15 days
post-TAM treatment. Microarray data (Affymetrix) were ana-
lysed using the ‘Ingenuity Pathway Analysis’ (IPA) which helped
us to define molecular interaction networks. The most activated
network in α6ΔIEC-TAM mutants included the gene encoding
IL-1β (see online supplementary figure S11A), confirming the
leading role of the latter regulatory circuit in disease severity.
Additional genes with ascribed function related to this
‘IL-1β-inflammatory network’ encoded pro-inflammatory mole-
cules (IL1-RL1, CXCL5/CXCL6 and CXCR2) or extracellular
matrix (ECM) remodelling factors (such as MMP10). Their dif-
ferential expression was validated by RT-qPCR (see online sup-
plementary figure S11B).

Altogether the phenocopy of colitis in adults having an
already well-established immune system and microbiota high-
lights that the origin of colitis in the absence of α6 integrin is
primarily associated with IEC detachment from the BM, secre-
tion of epithelial IL-18 and exacerbation due to bacteria.

The spontaneous and fully penetrant development of
adenocarcinomas in α6ΔIEC mice requires activation of
B lymphocytes and T lymphocytes
Some animal models of IBD can develop adenocarcinomas,
although at a low prevalence unless treated with dextran sodium
sulfate and azoxymethane.7 33 By contrast, we observed that all
α6ΔIEC mice spontaneously developed colorectal adenocarcin-
omas by 1 year of age, and without any further chemical treat-
ment. Adenocarcinomas and/or high-grade dysplasia were
mostly located in the rectal prolapse (figure 7A), and were
found very rarely in the small intestine (two out of the eight
cases analysed). Histopathological analyses revealed different
degrees of mucosal infiltration (figure 7B) and numerous Ki-67
positive cells were observed in invading glands within the rectal
prolapse (figure 7C). Among 14 mutant mice aged 48–80
weeks, all had adenocarcinomas (figure 7D). Interestingly,
α6ΔIEC-TAM mice treated with TAM at 8 weeks and analysed
1 year later or more developed also adenocarcinomas / high
grade dysplasia (five out of the seven cases analysed) or at least
low grade dysplasia (2/7) in the rectal prolapse, indicating that
the depletion of α6 integrin even when induced in the mature
intestine can trigger colitis-associated carcinogenesis (figure 7D).
We next used positron emission tomography (PET scan) to test
for the presence of metastasis. We detected a high metabolic
level of fluorodeoxyglucose (FDG) uptake in the whole large
intestine of 1-year-old α6ΔIEC mice, but failed to observe distant
metastasis (figure 7E).

As reported above, the adaptive immune system does not play
an obvious role in the onset of colitis. To define whether or not
activation of the adaptive immune system might also be dispens-
able for progression to adenocarcinomas, we compared single
α6ΔIEC and rag1−/− α6ΔIEC double mutant mice raised in specific
pathogen-free (SPF) conditions. Out of eight α6ΔIEC animals
aged 45–76 weeks, three had developed an adenocarcinoma,
one displayed a severe dysplasia, whereas the four remaining
had inflammation (figure 7D). By contrast, none of the 50–
64 weeks old rag1−/− α6ΔIEC double mutants (6/6) developed an
adenocarcinoma; instead they showed very discrete low grade
dysplasia lesions (4/6) and chronic inflammation (6/6) (figure

7D, F), suggesting a critical role for the T and B cell activation
on disease progression.

To know if local alterations of the microenvironment, in par-
ticular of the laminins, might contribute to tumour develop-
ment, WT and mutant rectal tissues were immunostained with
laminin γ2, the hemidesmosome ligand of α6β4, that is known
to be overexpressed and associated with poor prognosis in
CRC.34 Large laminin γ2 deposits were detected throughout the
whole tumoural area within the rectal prolapse in mutant mice
while the signal was restricted to the BM at the upper part of
the crypts in controls (figure 7G).

Finally, to better understand the mechanisms underlying
tumour aggressiveness, we defined the specific transcriptomic
signature associated with carcinogenesis in the α6ΔIEC model by
comparing gene expression in three distinct samples: (1)
adenocarcinoma-comprising areas from the mutant prolapse, (2)
inflamed but non-cancerous adjacent rectal mucosa and (3)
rectal mucosa obtained from WT mice. A first IPA analysis
allowed to identify significantly overexpressed or underex-
pressed genes in the tumour areas versus the inflamed mucosa
(Student’s t-test, p value ≤0.001; fold change ≥+2 or ≤−2) and
to define the most activated gene network in the tumours (see
online supplementary figure S12A). Many molecules involved in
ECM composition and degradation/remodelling, as well as
inflammatory components belong to this genes network.
Interestingly, several of them have been described as being
involved in colorectal carcinogenesis such as MMP9, MMP13
or TIMP1 (for review see ref. 35) or in inflammatory pathways
(for review see ref. 36). Moreover, as previously described for
the inflammation worsening, network analysis emphasised the
prominent role of IL-1 cytokines and IL-1R signalling, suggest-
ing that this inflammatory signature was required for tumour
progression.

We further characterised the molecular signature of inflamed
or cancerous lesions comparing them to the normal rectal
mucosa by using a second IPA analysis which revealed the differ-
ent categories of gene functions significantly affected. The
results are summarised in online supplementary table S1 and
figure S12B.

Altogether, the intestinal inflammation observed in α6ΔIEC

mice results from epithelial detachment and IL-18 secretion
leading to defective mucus barrier, independently of T lympho-
cyte and B lymphocyte activation and of MyD88 signalling.
Furthermore, our results suggest that intestinal tumourigenesis is
likely caused by continuous IL-1 signalling together with BM
remodelling and B cell and T cell activation.

DISCUSSION
We report for the first time the key physiological protective
function of the α6 integrin-mediated signalling in IECs against
intestinal inflammation and tumourigenesis in mice. Our data
suggest that the sequence of events leading to inflammation
after intestinal epithelial-specific Itga6 ablation during develop-
ment or induced in adults, first entailed hemidesmosome disrup-
tion leading to IEC detachment from the BM and to epithelium
weakening. In turn, this induced sustained caspase-1 activation
and IL-18 secretion in damaged IECs. Subsequently, the mucus
barrier became progressively defective, promoting the exposure
of IECs to bacterial and/or luminal components. Consequently,
chronic inflammation was mediated by IL-1β oversecretion and
myeloid cell accumulation. Importantly, the same cascade of
events was observed when Itga6 deletion was induced in the
adult intestine, ruling out indirect cumulative effects related to
developmental defects. Finally, all α6ΔIEC and α6ΔIEC-TAM
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animals developed spontaneous infiltrating tumours after 1 year
without any further chemical treatment. Such tumour develop-
ment was dependent on the activation of the adaptive immune
system (figure 8).

We suggest that defective α6 integrin function at the hemides-
mosome, and its induced mechanical epithelial fragility, is ultim-
ately responsible for colitis. The concomitant loss of the β4
integrin subunit, which has already been observed in Itga6
knockout,17 20 37 might unbalance some signalling events

modulated by this integrin chain,38 and could thereby trigger
caspase-1 activation and IL-18 secretion. Expression of the β1
integrin chain was not significantly affected in α6ΔIEC mice, con-
sistent with the fact that β1 depletion in the intestine led to
more severe phenotypes.39 We further suggest that the absence
of stable hemidesmosomal junctions leads to a reduced capacity
of IECs to resist mechanical stress, leading to epithelial detach-
ment in particular at weaning when such stress dramatically
increases due to changes in diet and amplification of muscle

Figure 7 All α6ΔIEC mice spontaneously develop colitis-associated adenocarcinomas. (A–G) Tumour features in ≥1-year-old α6ΔIEC mutant mice.
(A) Wide-field view (top) and histological section (bottom) of a large prolapse with an infiltrating mucinous adenocarcinoma invading the
submucosa and muscle layers (m). Dotted line, region comprising tumour lesions. Scale bars: 5 mm (top); 500 mm (bottom). (B) Views of
prolapse-associated tumours: (left) intraepithelial adenocarcinoma and (right) highly infiltrating adenocarcinoma (dotted lines, arrows). Higher
magnifications are shown in the lower panels. Scale bars: 100 mm. (C) Ki67 immunostaining (brown nuclei) on rectal sections from 1-year-old WT
and α6ΔIEC mice. Ki67+ cells are located at the base of the crypts (bar), and in the invading glands of the prolapse associated-adenocarcinoma
(right panel, arrows). Scale bars: 100 mm. (D) Schematic representation showing the repartition of 1-year-old affected mice according to their
genotype and the type of intestinal lesions they displayed; numbers mentioned in histogram columns and percentage (y-axis) of affected mice as
well as the lesion types are indicated. The genotype of mice and the housing conditions (conventional (conv.) vs SPF) are indicated under the chart.
(E) FDG-PET images of WT and α6ΔIEC mice showing a significant FDG uptake in the mutant large intestine and the rectal prolapse area (arrows).
(F) Section through the recto-anal region of a combined rag1−/− α6ΔIEC mutant showing a low grade dysplasia (dotted line, arrows). Lower panel:
high magnification of the dysplasia. Scale bars: 100 mm. (G) Immunodetection of laminin γ2 chain (green) in WT rectum and α6ΔIEC prolapse. DAPI
(in blue) marks nuclei. Arrowheads, basement membrane underlying the surface epithelium. Arrows, increased deposits of laminin γ2 in the
basement membrane and around tumour areas in α6ΔIEC prolapse. Asterisks (*), invasive gland infiltrated into the sm. Scale bar: 100 mm. ADK,
adenocarcinoma; Dys, low grade dysplasia; e, epithelium; FDG, fluorodeoxyglucose; Inf, inflammation; lp, lamina propria; lu, lumen; m, muscle layer;
sm, submucosa; SPF, specific pathogen-free; PET, positron emission tomography.
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contractions. The role of mechanical stress in the induction of a
severe intestinal dysfunction has been shown in mice deficient
for the integrin-associated protein kindlin-1, in which IECs fail
to properly adhere to the BM and to form an efficient epithelial
barrier, resulting in a severe colitis and perinatal lethality.40

Intestinal dysfunction due to α6β4 integrin absence in the intes-
tine and a complete epithelium detachment, was also reported
in a clinical case, and supports our findings.41 Interestingly, it
has also been shown that hemidesmosome disturbance in
Caenorhabditis elegans epidermis triggers an innate immune
response.42

The activation of IL-18 downstream of the epithelial detach-
ment induced by α6 integrin loss occurs independently of
MyD88 through yet unknown mechanisms. As the caspase-1 is
activated, we speculate that epithelial detachment leads to mech-
anical stress damage signals triggering the assembly of an inflam-
masome, which remains to be identified. Alterations that
accumulate as a result of these initial inflammatory signals
greatly contribute to increase disease severity. In particular,

impairment of the mucus barrier and the subsequent exposure
of the epithelial mucosa to bacterial compounds can exacerbate
colitis, as was observed in mice displaying defective mucus due
to the loss of core 1-derived O-glycans.43 Mucosal defects in
α6ΔIEC mice are presumably caused by: (i) the abnormal localisa-
tion of keratins K8/18,28 44 (ii) the abnormal distribution of the
ion transporters SLC26A3 and NHE3, implicated in mucus
barrier formation29–31 and (iii) increased levels of IL-18, which
controls the maturation and secretion of the mucus.27

Interestingly, it has been suggested that IL-18 controls the mat-
uration of GCs by regulating the expression of the transcription
factors Gfi1, Spdef and KLF4.27

Mechanistically, we identified that inflammation worsening
required innate but not adaptive immunity mainly through the
secretion of IL-1β, presumably by the infiltrating CD11b+

myeloid cells as a consequence of greater bacterial translocation.
We also suggest that bacteria strongly contribute to exacerbate
disease severity in our models, since antibiotic treatment strongly
lowered IL-1β secretion levels, and partially IL-18. Mutant

Figure 8 Model of the sequence of events leading to colorectal inflammation and carcinogenesis. Schematic drawing illustrating two IECs of the
large intestine attached through α6β4 integrin to the BM via the HDs. By compelling the data obtained from α6ΔIEC and α6ΔIEC-TAM models, we
suggest that the following sequence of events occurs. First, loss of the integrin impairs epithelial integrity causing epithelium fragility and
detachment from the BM. The absence of tight anchorage to the BM results in disruption of the IFs network and impaired cell architecture. Second,
epithelial damage triggers activation of caspase-1 in IECs followed by a drastic activation and secretion of IL-18. Intestinal permeability increases,
and hyperplasia occurs in the epithelium (not illustrated). Third, presumably as a secondary consequence (defective cytoskeleton, changes in
mucosal pH, cytokine release), the integrity and composition of the mucin layer become altered, favouring bacterial penetration and translocation.
Concomitantly, altered epithelial barrier function triggers an inflammatory response, induced in part by exposure of the immune system to bacteria.
Inflammation relies on engagement of the innate immune system, mostly independently of the lymphocyte-mediated immunity. It is characterised by
enhanced secretion of epithelial IL-18 and immune-mediated IL-1β, and infiltration of CD11b+ myeloid cells into the colonic mucosa. In parallel,
lymphoid cells secrete IL-17, IL-22 and IFNγ and sustain chronic inflammation over a long period. Lastly, perpetuation of long-standing colitis
associated with alterations of the microbiota invariably induces the spontaneous development of adenocarcinomas in all α6ΔIEC mutants, tumour
progression being dependent on the adaptive immune system. BM, basement membrane; HDs, hemidesmosomes; IECs, intestinal epithelial cells; IFs,
intermediate filaments.
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α6ΔIEC mice also displayed enhanced and antibiotic-insensitive
IL-17, IL-22 and IFNγ levels, which might contribute to inflam-
mation and later to adenocarcinoma formation, since IL-17 and
IL-22 have been involved in tumour progression.45–47

A most notable feature of the α6ΔIEC model is the spontaneous
development of colorectal adenocarcinomas, which had not been
observed to occur with full penetrance in previously described
mouse models of intestinal inflammation.33 Unexpectedly, the
IBD-like phenotype observed in mice deficient in keratin-8 (K8),
another key component of intestinal hemidesmosomes, relies on
T lymphocytes rather than myeloid cells but was not sufficient to
lead to carcinoma development.28 48 49 The latter findings
suggest that hemidesmosome function was not similarly affected
in K8−/− and α6ΔIEC models. In K8 deficient colon, the β4 integ-
rin was overexpressed and led to the activation of survival signals
mediated by focal adhesion kinase (FAK) phosphorylation, sug-
gesting that the hemidesmosomes remained at least partially
functional.50 By contrast, hemidesmosomes were totally dis-
rupted in the intestine of Itga6-deficient mice, which probably
led to an altered signalling cascade and keratin network.

Based on the tumourigenesis observed in α6ΔIEC mice, α6β4
integrin could be classified as a tumour suppressor. This conclu-
sion seems at odds with other results establishing that α6β4 integ-
rin behaves as an oncogene when it cooperates with ErbB2 in the
formation of mammary tumours.51 However, the function of
α6β4 is fully dependent on the tissue context.52 Likewise, in the
skin, α6β4 integrin can either suppress or promote tumour
growth depending on whether or not cells express Ras (V12),
which is the oncogenic form of the small GTPase.53

In future studies, it will be important to further assess whether
it is the microbiota imbalance, changes in the homeostasis of the
immune system or some other factors that play a prevalent role in
tumour formation. Besides host-microbiota interactions, mechan-
ical stress might also influence the process, since adenocarcin-
omas appeared mostly in the rectal region which is the most
intensely subjected to such stress and to interactions with the gut
microbiota. Interestingly, hemidesmosomes have recently been
found to act as a mechanotransduction platform;54 in this frame-
work, the lack of response to mechanical stimuli in α6ΔIEC mice
might contribute to impair epithelial homeostasis.

A large number of studies, mainly based on the development
of genetically engineered mouse models,33 have been conducted
for many years to define the origin of colitis-associated CRC. In
this study we revealed the key role of the integrin/BM connec-
tion and suggest that besides microbial cues, biomechanical cues
contribute to intestinal homeostasis. The key interest of the
α6ΔIEC line is that it recapitulates most of the events occurring
during colitis-associated carcinogenesis, with alterations very
similar to those observed in many patients with IBD at high risk
of developing CRC. In addition, our molecular characterisation
of tumours bring new interesting leads for understanding the
mechanisms involved in the progression of colitis-associated
cancer. Thereby, the α6ΔIEC model provides valuable tools to
develop new preventive/curative treatments for such unpredict-
able and invalidating diseases.

MATERIALS AND METHODS
The generation of mouse lines, their manipulation and other
specific analyses (antibiotic treatment, epithelial cell detachment
assay, FITC-dextran assay, endoscopy, histological analysis,
immunofluorescence, immunohistochemistry, FISH, FACS ana-
lysis, image analysis, cytokine measurements, preparation of
colon protein extracts and western blotting, RT-qPCR, tran-
scriptome analysis, FDG-microPET imaging and study approval)

as well as statistics used in this study are described in online sup-
plementary materials and methods.
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