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Signalling via the osteopontin and high mobility
group box-1 axis drives the fibrogenic response
to liver injury
Elena Arriazu,1 Xiaodong Ge,1,2 Tung-Ming Leung,1 Fernando Magdaleno,1,2

Aritz Lopategi,1 Yongke Lu,1 Naoto Kitamura,1 Raquel Urtasun,1 Neil Theise,3

Daniel J Antoine,4 Natalia Nieto1,2

ABSTRACT
Objective Liver fibrosis is associated with significant
collagen-I deposition largely produced by activated
hepatic stellate cells (HSCs); yet, the link between
hepatocyte damage and the HSC profibrogenic response
remains unclear. Here we show significant induction of
osteopontin (OPN) and high-mobility group box-1
(HMGB1) in liver fibrosis. Since OPN was identified as
upstream of HMGB1, we hypothesised that OPN could
participate in the pathogenesis of liver fibrosis by
increasing HMGB1 to upregulate collagen-I expression.
Design and results Patients with long-term hepatitis
C virus (HCV) progressing in disease stage displayed
enhanced hepatic OPN and HMGB1 immunostaining,
which correlated with fibrosis stage, whereas it remained
similar in non-progressors. Hepatocyte cytoplasmic OPN
and HMGB1 expression was significant while loss of
nuclear HMGB1 occurred in patients with HCV-induced
fibrosis compared with healthy explants. Well-established
liver fibrosis along with marked induction of HMGB1
occurred in CCl4-injected OpnHep transgenic yet it was
less in wild type and almost absent in Opn−/− mice.
Hmgb1 ablation in hepatocytes (Hmgb1ΔHep) protected
mice from CCl4-induced liver fibrosis. Coculture with
hepatocytes that secrete OPN plus HMGB1 and
challenge with recombinant OPN (rOPN) or HMGB1
(rHMGB1) enhanced collagen-I expression in HSCs,
which was blunted by neutralising antibodies (Abs) and
by Opn or Hmgb1 ablation. rOPN induced acetylation of
HMGB1 in HSCs due to increased NADPH oxidase
activity and the associated decrease in histone
deacetylases 1/2 leading to upregulation of collagen-I.
Last, rHMGB1 signalled via receptor for advanced
glycation end-products and activated the PI3K–pAkt1/2/
3 pathway to upregulate collagen-I.
Conclusions During liver fibrosis, the increase in OPN
induces HMGB1, which acts as a downstream alarmin
driving collagen-I synthesis in HSCs.

INTRODUCTION
Fibrogenesis encompasses qualitative and quantita-
tive changes in the extracellular matrix (ECM)
deposits with a significant buildup of collagen-I
fibers, largely produced by activated hepatic stellate
cells (HSCs), which extensively distort the normal
hepatic architecture. Failure to degrade the

Significance of this study

What is already known on this subject?
▸ Osteopontin (OPN) and high-mobility group

box-1 (HMGB1) are expressed in human and
mouse liver.

▸ We previously demonstrated the mechanisms
driving the increase in OPN in liver fibrosis; yet,
whether OPN could increase HMGB1 has not
been established.

▸ If besides the profibrogenic mechanisms
previously identified by us, OPN targets
HMGB1 to activate extracellular matrix
deposition by hepatic stellate cells (HSCs)
remained unknown.

What are the new findings?
▸ OPN and HMGB1 expression correlate with

fibrosis stage in humans and mice.
▸ Using in vivo and in vitro loss or gain of

function approaches, we demonstrate that OPN
is upstream of HMGB1.

▸ Extracellular OPN promotes the acetylation
of intracellular HMGB1 in HSCs due to
increased NADPH oxidase activity and
the associated decrease in histone
deacetylases 1/2 leading to upregulation of
collagen-I.

▸ Extracellular HMGB1 signals HSCs via the
receptor for advanced glycation end-products
activating the PI3K–pAkt1/2/3 pathway to
increase collagen-I deposition.

How might it impact on clinical practice in
the foreseeable future?
▸ Identification of key mediators along with

better understanding of the signalling pathways
they trigger to promote fibrosis is critical to
prevent disease progression and design new
therapies. This study reinforces the role of
HMGB1, a hepatic sterile damage-associated
molecular pattern, in the progression of liver
fibrosis. The role of OPN and HMGB1 on
collagen-I production by HSCs reveals novel
signalling mechanisms that could be targeted
for therapeutic benefit.
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progressive increase in scar tissue is a major reason why fibrosis
evolves into cirrhosis and hepatocellular carcinoma. To date,
extensive research has focused on identifying the key factors
involved in the pathogenesis of liver fibrosis; yet, the precise
link between injured hepatocytes, HSCs and the fibrogenic
response still remains poorly defined.

We have previously shown that osteopontin (OPN), a matrix-
bound protein sensitive to oxidant stress and highly induced
upon liver damage, plays a central role in the pathogenesis of
liver fibrosis by contributing to ECM deposition.1–3 Mechanistic
studies revealed first that OPN upregulates collagen-I production
by HSCs via integrin αvβ3 engagement and activation of the
PI3K–pAkt1/2/3–NFκB signalling pathway;3 and second, that
OPN drives ductular reaction contributing to periportal scarring
by increasing transforming growth factor (TGF) β production in
biliary epithelial cells;1 yet, additional mediators downstream of
OPN, perhaps with profibrogenic potential, could participate
increasing pathological collagen-I deposition by HSCs.

High-mobility group box-1 (HMGB1) is a nuclear non-
histone chromosomal protein that binds the DNA minor groove
and is involved in DNA replication, repair and energy homeo-
stasis.4 Initially, it was believed that HMGB1 acted primarily as
an architectural protein. However, upon cellular injury and
post-translational modifications (PTMs), HMGB1 undergoes
translocation from the nucleus to the cytoplasm and is secreted
via the lysosomal pathway in most cells.5 HMGB1 signals via
the receptor for advanced glycation end-products (RAGE), toll-
like receptors (TLRs)-2/4/9, Mac-1, syndecan-1, phosphacan
protein-tyrosine phosphatase-ζ/β and CD24.6

Recent work from our laboratory has demonstrated that
HMGB1 has noxious effects in the hepatic environment in the
setting of alcoholic liver disease.7 When released from injured
or necrotic cells due to loss of membrane integrity8 or when
secreted by hepatocytes in response to ethanol,7 HMGB1 can
trigger harmful responses. Thus, HMGB1 is now considered a
member of the family of damage-associated molecular patterns
(DAMPs) that communicate injury to neighbouring cells.

Although this alarmin increases in plasma and liver from alco-
holic and fibrotic patients,7 9 it is unknown whether it plays a
direct role in liver fibrosis. Our preliminary in vivo observations
suggested that OPN is upstream of HMGB1 in hepatocytes and
HSCs. To date, whether OPN by increasing HMGB1 in a para-
crine and/or in an autocrine fashion could regulate collagen-I
deposition in HSCs has not been demonstrated. Thus, we
hypothesised that OPN by upregulating HMGB1 could partici-
pate in the pathogenesis of liver fibrosis driving scarring. Using
in vivo and in vitro loss-of-function or gain-of-function
approaches we focused on dissecting how the OPN and
HMGB1 axis in hepatocytes and HSCs regulates the HSC profi-
brogenic behaviour. Overall, the data show that intracellular
OPN increases HMGB1 expression and extracellular OPN
induces acetylation of HMGB1 in HSCs due to increased
NADPH oxidase (NOX) activity and the associated decrease in
histone deacetylases (HDACs) 1/2 leading to upregulation of
collagen-I. Thus, OPN has autocrine and paracrine effects in
HSCs. Moreover, extracellular HMGB1 upregulates collagen-I
expression in HSCs paracrinely due to RAGE activation of the
PI3K–pAkt1/2/3 signalling pathway; thus, contributing to the
pathogenesis of liver fibrosis.

MATERIALS AND METHODS
Mice
C57BL/6J wild-type (WT) and Opn−/− (B6.Cg-Spp1tm1Blh/J)
mice were obtained from the Jackson Laboratory (Bar Harbor,

Maine, USA). Opn+/− mice were intercrossed and littermates
were used in all experiments. The Opn transgenic mice overex-
pressing OPN in hepatocytes (OpnHep Tg) under the serum
amyloid-P component promoter were donated by Dr Mochida
(Saitama Medical University, Saitama, Japan).10 These mice
were crossbred for 10 generations with the same strain and
stock number of C57BL/6J WT listed above. The Hmgb1fl/fl

mice were donated by Dr Billiar (University of Pittsburgh,
Pittsburgh, Pennsylvania, USA). In these mice, the Hmgb1loxP

allele was created by inserting loxP sites within introns 1 and 2
flanking exon 2 of Hmgb1.11 The Hmgb1fl/fl mice were bred
with Alb.Cre mice (the Jackson Laboratory) to generate
hepatocyte-specific Hmgb1fl/flAlb.Cre mice (abbreviated as
Hmgb1ΔHep). All animals received humane care according to the
criteria outlined in the ‘Guide for the Care and Use of
Laboratory Animals’ prepared by the National Academy of
Sciences and published by the National Institutes of Health.

Statistical analysis
Data were analysed by a two-factor analysis of variance. All in
vitro experiments were performed in triplicate at least four
times. A representative blot is shown in all figures. Eight mice
per group were used in all the in vivo experiments, which were
repeated twice.

RESULTS
OPN and HMGB1 colocalise and their expression correlates
with fibrosis progression in patients with chronic
HCV-induced fibrosis
Since we hypothesised that OPN and HMGB1 could upregulate
collagen-I deposition in human liver fibrosis, we determined
whether there was correlation between the induction of both
proteins and scarring. To this end, we analysed the expression
of OPN and HMGB1 in paraffin-embedded archived human
liver biopsies from deidentified controls and from patients with
clinically proven hepatitis C virus (HCV). The latter were paired
biopsy specimens, some of which showed progression of
HCV-induced fibrosis (progressors) and others did not (non-
progressors). Liver biopsies from patients with HCV showed
coinduction of both OPN and HMGB1 expression compared
with healthy explants (figure 1A, B). While their expression
remained akin over time in the non-progressors (figure 1A),
both proteins increased with fibrosis stage in the progressors
(figure 1B). Computer-assisted morphometry assessment
demonstrated correlation between OPN and HMGB1 expres-
sion and fibrosis stage in patients with chronic HCV infection
(figure 1C). Immunofluorescence analysis proved co-localisation
of both proteins in patients with chronic HCV infection (figure
1D). Thus, these results suggest that OPN and HMGB1 coloca-
lise and their expression correlates with fibrosis progression in
patients with chronic HCV-induced fibrosis.

OPN and HMGB1 colocalise and their expression correlates
in CCl4-induced liver injury in mice
To determine whether OPN is upstream of HMGB1 and dissect
if OPN induces HMGB1 therefore contributing to the fibro-
genic response to liver injury, we used the CCl4 model of liver
fibrosis along with genetic manipulation of Opn using WT,
Opn−/− and OpnHep Tg mice as previously.3

Immunohistochemistry (IHC) analysis revealed that
CCl4-injected OpnHep Tg mice showed a marked increase in
hepatic OPN (figure 2A) and HMGB1 (figure 2B, top) expres-
sion compared with mineral oil (MO)-injected WT mice;
however, HMGB1 immunostaining was significantly reduced in
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Opn−/− mice, which was also quantified by morphometry ana-
lysis and western blot (figure 2B, middle). Moreover, serum
HMGB1 doubled in CCl4-injected OpnHep Tg compared with
WT mice (not shown). Since HMGB1 nucleocytoplasmic shut-
tling is critical for driving downstream events,7 HMGB1 local-
isation was quantified by computer-assisted morphometry
analysis. There was a significant decrease in the ratio of
nuclear-to-total HMGB1 along with an increase in the ratio of
cytoplasmic-to-total HMGB1 expression in CCl4-injected
OpnHep Tg compared with WTand it was lower in Opn−/− mice
(figure 2B, bottom). Immunofluorescence analysis demonstrated
colocalisation of OPN and HMGB1 along with induced expres-
sion in CCl4-injected WT mice (figure 2C). OPN and HMGB1
expression significantly increased in hepatocytes as shown by
colocalisation with HNF4α (nuclear staining)12 (figure 2D, top

and middle). Similarly, HMGB1 expression was enhanced in
HSCs, although to a lesser extent than in hepatocytes, as shown
by colocalisation with desmin (figure 2D, bottom).
Furthermore, collagen-I deposition was greater in chronic
CCl4-injected OpnHep Tg compared with WT but it was much
lesser in Opn−/− mice as shown by IHC and morphometry ana-
lysis (figure 2E). These in vivo results suggest the possibility that
OPN could drive HMGB1 release.

Hmgb1 ablation in hepatocytes partially prevents
CCl4-induced liver fibrosis in mice
Since the human and mouse data suggested a possible role for
HMGB1 of hepatocyte origin in liver fibrosis, to determine the
effect of blocking hepatocyte-derived HMGB1, Hmgb1ΔHep

and control littermates were chronically injected MO or CCl4.

Figure 1 Osteopontin (OPN) and
high-mobility group box-1 (HMGB1)
colocalise and their expression
correlates with fibrosis progression in
patients with chronic HCV-induced
fibrosis. H&E staining, OPN and
HMGB1 immunohistochemistry (IHC) in
paraffin-embedded archived human
liver biopsies from a deidentified
control and from a patient with
clinically proven hepatitis C virus
(HCV)-induced fibrosis that did not
progress in disease stage (stage 2)
over 3 years show similar expression of
OPN (yellow arrows, insets) and
HMGB1 (green arrows, insets) (A).
H&E staining, OPN and HMGB1 IHC
from a patient with clinically proven
HCV-induced fibrosis that progressed
from stage 2 to 3 in 3 years show
increased expression of OPN (yellow
arrows, insets) and HMGB1 (green
arrows, insets) (B). Total OPN and
HMGB1 morphometry analysis
according to fibrosis stage. Results are
expressed as fold-change of the
healthy liver explants, which are
assigned a value of 1; n=10/group,
***p<0.001 for stages 1, 2, 3 or 4 vs
0 (C). Immunofluorescence shows
colocalisation of OPN (red) and
HMGB1 (green) in a patient with
chronic HCV-induced fibrosis at
stage 3 (D). DAPI, 40,6-diamidino-
2-phenylindole; IOD, integrated optical
density.
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Figure 2 Osteopontin (OPN) and
high-mobility group box-1 (HMGB1)
colocalise and their expression
correlates in carbon tetrachloride
(CCl4)-induced liver injury in mice.
Wild-type (WT), Opn−/− and OpnHep Tg
mice were injected with mineral oil
(MO) or CCl4 for 1 month. OPN (A)
and HMGB1 (B, top)
immunohistochemistry (IHC) and
morphometry analysis in livers from
CCl4-injected mice show increased
OPN (yellow arrows, insets) along with
HMGB1 (green arrows, insets)
expression, which is greater in
CCl4-injected OpnHep Tg than in WT
and less in Opn−/− mice. Western blot
analysis for HMGB1 in livers from
MO-injected WT and CCl4-injected WT,
Opn−/− and OpnHep Tg mice. The
results from the western blot analysis
are corrected by calnexin (loading
control) (B, middle). Quantification of
nuclear, cytoplasmic, nuclear-to-total
and cytoplasmic-to-total HMGB1
expression (B, bottom).
Immunofluorescence shows
colocalisation of OPN and HMGB1 as
well as induction in CCl4-injected WT
mice (C, top), which was quantified by
morphometry (C, bottom).
Immunofluorescence demonstrates
colocalisation of OPN and HMGB1
with HNF4α (hepatocyte marker,
nuclear) along with induction by CCl4
treatment (D, top and middle). There is
also colocalisation of HMGB1 with
desmin (hepatic stellate cell (HSC)
marker, cytoplasmic) along with
induction by CCl4 treatment (D,
bottom). Collagen-I IHC and
morphometry assessment in livers from
MO-injected or CCl4-injected WT,
Opn−/− and OpnHep Tg mice (E). In all
panels, the results are expressed as
fold-change of the WT mice injected
MO, which are assigned a value of 1
and are mean values±SEM; n=8/group.
*p<0.05, **p<0.01 and ***p<0.001
for CCl4-injected mice versus
MO-injected mice; ●p<0.05,
●●p<0.01 and ●●●p<0.001 for
OpnHep Tg or Opn−/− versus WT mice.
CV, central vein; DAPI,
40,6-diamidino-2-phenylindole; IOD,
integrated optical density; PV, portal
vein.
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H&E staining, the pathology scores and serum alanine amino-
transferase plus aspartate aminotransferase activities demon-
strated less necrosis, inflammation, hepatocyte ballooning
degeneration and fibrosis in CCl4-injected Hmgb1ΔHep com-
pared with control littermates (figure 3A). Similar results were
observed in a second model of liver fibrosis induced by
common bile duct ligation (BDL) (see online supplementary
figure S1). Hmgb1 deletion in hepatocytes was confirmed by
IHC in livers from Hmgb1ΔHep and control littermates (figure
3B, top). IHC revealed less collagen-I expression in
CCl4-injected Hmgb1ΔHep compared with control littermates
(figure 3B, top). Hmgb1 ablation did not affect OPN expression

confirming that OPN is upstream of HMGB1 (figure 3B, top).
The intensity of the positive staining from these proteins was
quantified by morphometry analysis (figure 3B, middle).
Similarly, Hmgb1 ablation did not alter RAGE expression
(figure 3B, bottom) or any other known HMGB1 receptor
mRNA (not shown). Thus, Hmgb1 ablation in hepatocytes par-
tially prevents CCl4-induced liver fibrosis in mice.

OPN is also upstream of HMGB1 in HSCs and they both
regulate collagen-I expression in an autocrine fashion in vitro
We previously demonstrated that HSCs express OPN1 and this
study revealed that HSCs also produce HMGB1. We next asked

Figure 2 Continued.
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whether HSC-derived OPN could exert an autocrine effect on
HMGB1 expression in HSCs and eventually on collagen-I
synthesis. Freshly isolated mouse WT and Opn−/− HSCs were
evaluated for OPN, HMGB1 and collagen-I expression. Opn−/−

showed a 90% reduction in intracellular HMGB1 as well as in
intracellular and extracellular collagen-I compared with WT
HSCs (figure 4A, left). Conversely, WT HSCs infected with an
adenovirus to overexpress OPN showed an increase in HMGB1
(figure 4A, right) and collagen-I3 expression compared with
HSCs infected with control LacZ adenovirus. To determine if
HMGB1 could condition OPN levels, WT and Hmgb1−/−

mouse embryonic skin fibroblasts (MEFs) were analysed for
OPN, HMGB1 and collagen-I expression. Hmgb1−/− showed
similar intracellular OPN but a 90% reduction in intracellular
plus extracellular collagen-I expression compared with WT
MEFs (figure 4B). These data suggest that OPN is also upstream
of HMGB1 in HSCs and they both regulate collagen-I expres-
sion in vitro in an autocrine fashion.

Hepatocytes are a major source of OPN and HMGB1
signalling to HSCs to increase collagen-I production
Since the human and mouse IHC suggested that hepatocytes are
a major source of both OPN and HMGB1, to further define
their paracrine involvement in the upregulation of collagen-I
production by HSCs, cocultures of primary hepatocytes from
MO-treated or CCl4-treated mice and HSCs were established.
First, the cocultures were incubated in the presence of neutralis-
ing antibodies (Abs) to OPN or HMGB1; and second, the
cocultures were established with hepatocytes from MO-treated
or CCl4-treated Opn−/−, Hmgb1ΔHep and their respective
control littermates. Western blot analysis demonstrated an
increase in intracellular and extracellular collagen-I in HSCs
cocultured with WT hepatocytes from CCl4-treated mice (figure
4C, left and right, lane 3 in both blots); hence, HSCs were
responsive to hepatocyte-derived factors. These mediators were
identified as OPN and HMGB1, since incubation with neutralis-
ing Abs to each one of them prevented the collagen-I induction

Figure 3 Hmgb1 ablation in hepatocytes partially prevents carbon tetrachloride (CCl4)-induced liver fibrosis in mice. Hmgb1ΔHep and control
littermates were injected mineral oil (MO) or CCl4 for 1 month. H&E staining (A, top), the pathology scores (A, middle) and serum alanine
aminotransferase (ALT) plus aspartate aminotransferase (AST) activities (A, bottom) show lower necrosis, inflammation, hepatocyte ballooning
degeneration and fibrosis in Hmgb1ΔHep compared with control littermates. High-mobility group box-1 (HMGB1); green arrows, insets and collagen-I
immunohistochemistry (IHC) and morphometry analysis show reduced HMGB1 and collagen-I deposition in livers from CCl4-injected Hmgb1ΔHep

compared with control littermates. IHC and western blot analysis demonstrate similar expression of osteopontin (OPN) and receptor for advanced
glycation end-products (RAGE) in these mice (B). The results are expressed as fold-change of the MO-injected control littermates, which are assigned
a value of 1 and are mean values±SEM; n=8/group. *p<0.05, **p<0.01 and ***p<0.001 for CCl4-injected versus MO-injected mice;
●p<0.05, ●●p<0.01 and ●●●p<0.001 for Hmgb1ΔHep versus control littermates. CV, central vein; IOD, integrated optical density; PV, portal vein;
WT, wild type.
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in HSCs (figure 4C, left and right, lane 4 in both blots).
Moreover, coculture with primary mouse hepatocytes from
CCl4-treated Opn−/− or Hmgb1ΔHep mice downregulated intra-
cellular and extracellular collagen-I in HSCs and blunted the
CCl4-mediated collagen-I increase (figure 4C left and right, lane
8 in both blots). Therefore, hepatocyte-derived OPN and
HMGB1 target HSCs and drive their profibrogenic behaviour.

rOPN induces HMGB1 expression and translocation in HSC
and drives the increase in collagen-I production
Next, we examined if treatment with rOPN, as the upstream signal
and as a surrogate of the coculture model or paracrine effects,
could also replicate the increase in HMGB1 and collagen-I expres-
sion observed in HSCs. Primary rat HSCs cultured for 4 days (qui-
escent) or for 7 days (activated) and stimulated with rOPN
increased HMGB1 and collagen-I expression (figure 5A, left). The

effects on HMGB1 were at the protein level since Hmgb1 mRNA
remained similar after the rOPN challenge (not shown) and inhib-
ition of protein synthesis with cycloheximide blocked the increase
in HMGB1 by rOPN in HSCs (figure 5A, right).

Since HMGB1 undergoes nucleocytoplasmic shuttling in
response to a variety of stressors and PTMs,7 we next examined
whether rOPN could promote HMGB1 translocation from the
nucleus to the cytoplasm and eventually condition collagen-I
synthesis by HSCs. Western blot analysis of nuclear and cyto-
plasmic proteins from HSCs stimulated with rOPN proved that
the increase in cytoplasmic HMGB1 correlated with collagen-I
(figure 5B). These results were also validated by immunofluores-
cence for HMGB1 and collagen-I in primary mouse HSCs
(figure 5C).

To further confirm that following rOPN treatment, HMGB1
translocation drives collagen-I deposition, rat HSCs were

Figure 3 Continued.
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transfected with constructs driving HMGB1 localisation to the
nucleus or to the cytoplasm and collagen-I expression was eval-
uated. The constructs were (1) pGFP, an empty vector used as a
negative control; (2) WT.Hmgb1.GFP, containing nuclear local-
isation signals (NLS) 1 and 2 to overexpress HMGB1 and allow
response to stimuli that could drive the protein to the cytoplasm
and (3) Hmgb1.NLS1/2(8K→8A).GFP, containing all eight
lysines in the two NLS mutated to alanines that cannot be acety-
lated therefore resulting in HMGB1 nuclear localisation13 (see
scheme on figure 5D).

In the absence of a stimulus, HSCs transfected with the WT.
Hmgb1.GFP or the Hmgb1.NLS1/2(8K→8A).GFP vectors
showed green fluorescence only in the nucleus corresponding to
HMGB1 nuclear localisation (white arrows) compared with
HSCs transfected with the pGFP vector, which showed diffuse
green fluorescence corresponding to GFP only. Treatment with

rOPN increased collagen-I expression in WT.Hmgb1.
GFP-transfected HSCs only (red staining); still, rOPN induced
greater collagen-I expression (yellow arrows) in HSCs trans-
fected with WT.Hmgb1.GFP showing cytoplasmic HMGB1
(white arrow heads) (figure 5E, top and middle panels, figure
5F). These results suggest that rOPN induces HMGB1 cytoplas-
mic localisation leading to an increase in collagen-I expression.
Moreover, transfection with the Hmgb1.NLS1/2(8K→8A).GFP
vector revealed that forced nuclear localisation of HMGB1
decreases the HSCs response to rOPN as less collagen-I was
observed compared with the WT.Hmgb1.GFP-transfected HSCs
(figure 5E, middle and bottom panels, figure 5F). Overall, these
experiments reveal that rOPN induces HMGB1 and collagen-I
expression in quiescent and activated HSCs and promotes
HMGB1 translocation from the nucleus to the cytoplasm thus
driving collagen-I production by HSCs; still, the mechanism for

Figure 4 Osteopontin (OPN) is also upstream of high-mobility group box-1 (HMGB1) in hepatic stellate cells (HSCs) and they both regulate
collagen-I expression in an autocrine fashion in vitro. Primary HSCs from wild-type (WT) and Opn−/− mice were cultured for 5 days. Western blot
analysis of intracellular OPN, HMGB1 and collagen-I plus extracellular collagen-I expression (A, left). Rat HSCs were infected with Ad-LacZ or
Ad-OPN for 48 h. Western blot analysis of intracellular OPN and HMGB1 in rat HSCs infected with Ad-LacZ or Ad-OPN (A, right). Mouse embryonic
skin fibroblasts (MEFs) from WT and Hmgb1−/− mice were cultured for 1 day. Western blot analysis of intracellular OPN, HMGB1 and collagen-I plus
extracellular collagen-I expression (B). Hepatocytes are a major source of OPN and HMGB1 signalling to HSCs to increase collagen-I production.
Primary rat HSCs were cultured alone for 5 days and then cocultured with primary hepatocytes from mineral oil (MO)-treated or CCl4-treated Opn−/−,

Hmgb1ΔHep and their matching control littermates for 1 day in the presence or absence of non-immune IgG or a neutralising antibody (Ab) to
HMGB1 or OPN, respectively. Western blot analysis of intracellular and extracellular collagen-I is shown (C). In all panels, the results are corrected by
the specific loading control and are expressed as fold-change of the control, which are assigned a value of 1 and are mean values±SEM; n=3/group.
Experiments were performed in triplicate four times. *p<0.05, **p<0.01 and ***p<0.001 for Ad-OPN or CCl4 versus Ad-LacZ or MO; ●p<0.05,
●●p<0.01 and ●●●p<0.001 for Opn−/−, Hmgb1−/−, HMGB1 Ab or OPN Ab versus WT or IgG; °p<0.05, °°p<0.01 and °°°p<0.001 for the Opn−/−

and Hmgb1ΔHep coculture versus the WT and the control littermate cocultures.
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Figure 5 Recombinant osteopontin (rOPN) induces high-mobility group box-1 (HMGB1) expression and translocation in hepatic stellate cells (HSCs)
and drives the increase in collagen-I production. Primary rat HSCs cultured for 4 days (quiescent) or 7 days (activated) were treated with rOPN for
6 h. Western blot analysis for intracellular HMGB1 and for intracellular plus extracellular collagen-I (A, left). Western blot analysis for HMGB1 in
primary rat HSCs treated with 50 nM rOPN for 6 h in the presence or absence of 100 mM cycloheximide (A, right). Primary rat HSCs cultured for
7 days were treated with rOPN for 6 h. Western blot analysis of nuclear plus cytoplasmic HMGB1 and intracellular collagen-I (B). In (A and B), the
results are expressed as fold-change of the corresponding control, which are assigned a value of 1 if signal is present and are mean values±SEM;
n=3/group in experiments performed in triplicate four times. *p<0.05, **p<0.01 and ***p<0.001 for rOPN versus control; ●●●p<0.001 for
cycloheximide cotreated versus rOPN. Primary mouse HSCs treated with 50 nM rOPN for 6 h. Immunofluorescence analysis for HMGB1 (green) and
collagen-I (red) (C). HMGB1 structure and schematic representation of the lysine residues targeted in the HMGB1 constructs (D). Rat HSCs were
transfected with a series of constructs driving HMGB1 localisation followed by 0–50 nM rOPN treatment for 6 h. The constructs were (1) pGFP, an
empty vector as a negative control; (2) wild-type (WT).Hmgb1.GFP containing nuclear localisation signals 1 (NLS1) and NLS2 to overexpress HMGB1
and (3) Hmgb1.NLS1/2(8K→8A).GFP containing all eight lysines in the two NLS mutated to alanines, which cannot be acetylated and result in
nuclear localisation. Immunofluorescence for collagen-I (yellow arrows) and GFP fluorescence (HMGB1 localization: white arrows point at nuclear
HMGB1 and white arrowheads point at cytosolic HMGB1) were visualised by confocal microscopy (E) and quantified by morphometry assessment
(F). In (F), the results are expressed as fold-change of the control WT.Hmgb1.GFP, which are assigned a value of 1 and are mean values±SEM; n=3/
group in experiments performed in triplicate four times. *p<0.05, **p<0.01 and ***p<0.001 for rOPN versus control; ●●p<0.01 and ●●●p<0.001
for Hmgb1(8K→8A).GFP versus WT.Hmgb1.GFP. IOD, integrated optical density.
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Figure 5 Continued
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the mobilisation of HMGB1 in HSCs under rOPN treatment
remained undefined.

rOPN activates NOX and inhibits HDACs1/2 promoting
HMGB1 acetylation and translocation along with collagen-I
upregulation in HSCs
As HMGB1 nucleocytoplasmic shuttling occurs in response to
stressors and/or PTMs,7 we examined if rOPN could trigger a
specific PTM in HSCs that would increase HMGB1.
Immunoprecipitation followed by immunoblotting revealed
significant acetylation of HMGB1 in the presence of rOPN
(figure 6A). Using electrospray ionisation–liquid chromatog-
raphy–mass spectrometry,7 we analysed the HMGB1 residues
modified under rOPN treatment in HSCs and found

significant acetylation in a cluster of eight lysines (28–30, 180
and 182–185), minimal oxidation of cysteines 23 and 45 and
no phosphorylation of serine 35 (figure 6B and not shown);
however, how these specific PTMs occurred remained
unknown.

Acetylation typically occurs due to enhanced histone acetyl-
transferases (HATs) and/or decreased HDACs activity; thus, we
measured the activity of HATs and HDACs. The activity of
HATs remained similar; however, there was a decrease in the
activity of HDACs in rOPN-treated HSCs compared with
control HSCs (not shown). Although PCAF (p300/CBP-asso-
ciated factor) and p300 have been described to acetylate
HMGB1;14 yet, western blot analysis revealed similar PCAF and
p300 expression in rOPN-stimulated HSCs compared with

Figure 6 Recombinant osteopontin
(rOPN) activates NADPH oxidase (NOX)
and inhibits histone deacetylases
(HDACs) 1/2 promoting high-mobility
group box-1 (HMGB1) acetylation and
translocation along with collagen-I
upregulation in hepatic stellate cells
(HSCs). Rat HSCs were treated with
rOPN for 6 h. Immunoprecipitation of
intracellular HMGB1 and
immunoblotting for acetylated lysines
(A). Identification of the HMGB1
isoforms in HSCs lysates and in the cell
culture medium. Spectra of whole
protein electrospray ionisation–liquid
chromatography–mass spectrometry of
the HMGB1 isoforms. A schematic
representation of each isoform is on
each spectra (grey boxes); n=3/group
(B). Rat HSCs were treated with rOPN
for 2 h. Western blot analysis for PCAF
and p300 (C). Rat HSCs were treated
with rOPN for 1 and 2 h. Western blot
analysis for HDACs1-6 (D). NOX
activity in rat HSCs treated with rOPN
for 6 h alone or pretreated for 0.5 h
with apocynin or diphenyleneiodonium
(DPI), the two NOX inhibitors. The
percentage of dihydroethidium
(DHE)-positive cells was measured by
flow cytometry as an indirect
measurement of O2

.− production (E).
Rat HSCs were treated with rOPN for
6 h in the presence or absence of
apocynin or DPI. Western blot analysis
of HDACs1/2 along with intracellular
and extracellular collagen-I (F). The
results from the western blot analysis
are corrected by the specific loading
control and are expressed as
fold-change of the controls, which are
assigned a value of 1 and are mean
values±SEM; n=3/group in
experiments performed in triplicate
four times. *p<0.05, **p<0.01 and
***p<0.001 for rOPN versus control;
•p<0.05 and ••p<0.01 for cotreated
versus rOPN. HDACs, histone
deacetylases.
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control HSCs (figure 6C). Next, we analysed if the expression
of HDACs in HSCs changed under the rOPN challenge.
Western blot analysis demonstrated a decrease in HDACs1/2,
whereas HDACs3–6 remained similar in rOPN-stimulated HSCs
compared with control HSCs (figure 6D). Thus, rOPN acety-
lates HMGB1 likely by inhibiting HDACs1/2, which could con-
tribute to HMGB1 cytoplasmic accumulation. Nevertheless,
how inhibition of HDACs1/2 occurred remained undefined.

HDACs activity can be inhibited by activation of NOX with
the subsequent generation of reactive oxygen species.15 To
establish if rOPN could activate NOX and inhibit HDACs1/2 in
HSCs, we measured NOX activity and O2

.− production and
found an increase in NOX activity and O2

.− levels. When NOX
induction was blocked by apocynin or diphenyleneiodonium
(DPI) chloride, the two NOX inhibitors (figure 6E), they pre-
vented the rOPN-mediated decrease in HDACs1/2 and the
increase in collagen-I expression in HSCs (figure 6F). Overall,
these results provide proof of concept that rOPN activates NOX
to induce the production of O2

.−, which inhibits HDACs1/2
expression, allows HMGB1 acetylation and upregulates
collagen-I synthesis by HSCs.

rHMGB1 signals via the PI3K–pAkt1/2/3 pathway to
upregulate collagen-I expression in HSCs
Since the human and mouse data along with the coculture
studies suggested that hepatocytes produce and secrete
HMGB1, which was identified as downstream of OPN, we next
asked if extracellular HMGB1 per se could also signal to HSCs
and increase collagen-I synthesis. To address this question, HSCs
were challenged with rHMGB1, which did not alter OPN
expression, yet increased intracellular and extracellular
collagen-I (figure 7A). Since collagen-I production is highly
dependent from protein kinase activation, to better understand
how rHMGB1 upregulated collagen-I synthesis in HSCs, we
analysed the expression of a series of protein kinases to deter-
mine their potential activation by rHMGB1. Following

evaluation of the expression and phosphorylation state of
protein kinases known to activate collagen-I synthesis (ie, ERK1/
2, PI3K, Akt, p70RSK, p38, JNK), we identified that rHMGB1
time-dependently increased PI3K and induced the phosphoryl-
ation of Akt1/2/3, its downstream target (figure 7B). To confirm
that they were indeed involved in the effects of rHMGB1 on
collagen-I production by HSCs, cells were preincubated with
the PI3K inhibitors wortmannin or LY294002 and then chal-
lenged with rHMGB1. Western blot analysis revealed a decrease
in collagen-I production under rHMGB1 treatment when cells
were pretreated with inhibitor, thus validating the role of PI3K
and pAkt1/2/3 in the effects of rHMGB1 on collagen-I expres-
sion in HSCs (figure 7C). Therefore, extracellular HMGB1 per
se also upregulates collagen-I in HSCs via PI3K–pAkt1/2/3
signalling.

rHMGB1 signals via RAGE to upregulate collagen-I
expression through the PI3K–pAkt1/2/3 pathway in HSCs
Last, since HMGB1 binds several receptors, of which RAGE16

and TLRs2/4/917–19 have been described to play a role in the
setting of liver fibrosis, we evaluated whether the HMGB1
effects on collagen-I were receptor-mediated. To this end, we
ablated Rage or Tlrs2/4/9 using shRNA lentiviral particles or
siRNA strategies. Upon successful ablation (figure 7D and not
shown), HSCs were treated with rHMGB1 and collagen-I
expression was evaluated. RAGE (figure 7D) but not TLRs2/4/9
(see online supplementary figure S2) was critical for the effects
of rHMGB1 on collagen-I upregulation in HSCs since western
blot analysis showed upregulation of collagen-I following
rHMGB1 treatment, without altering RAGE expression but not
after Rage ablation (figure 7D). To identify whether the PI3K–
pAkt1/2/3 signalling pathway was activated in a
RAGE-dependent manner, we analysed the expression of these
proteins and found no activation of PI3K and pAkt1/2/3 after
rHMGB1 treatment when Rage was ablated (figure 7D).
Overall, these results suggest that rHMGB1 signals via RAGE

Figure 6 Continued
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and activates the PI3K–pAkt1/2/3 pathway to upregulate
collagen-I in HSCs. Last, to confirm the role of RAGE in the
collagen-I upregulation in liver fibrosis in vivo, WT mice were
chronically injected CCl4 in the presence of non-immune IgG
or a RAGE neutralising Ab. Blockade of RAGE partially pre-
vented liver fibrosis compared with mice injected with an irrele-
vant isotype-matched control monoclonal antibody (figure 7E).

DISCUSSION
Since the incidence of liver fibrosis is rising worldwide, there is
a pressing need to identify novel targets and design new therap-
ies to prevent disease onset and/or progression. To date, most of
the research in this field has focused on identifying the events

involved in the pathogenesis of liver fibrosis; yet, the precise
link between injured hepatocytes, HSCs and scarring remained
to be identified. Thus, our goal was to dissect if OPN targets
HMGB1 and how the upregulation of both proteins in hepato-
cytes and in HSCs contributes to the pathogenesis of liver fibro-
sis by regulating scarring.

This study provides compelling evidence for both
co-localisation and correlation of the expression of OPN and
HMGB1 with fibrosis progression in patients with clinically
proven HCV-induced fibrosis.

To determine if OPN is upstream of HMGB1 and to dissect if
it targets it contributing, via yet to be established mechanisms,
to the fibrogenic response to liver injury, we used the CCl4

Figure 7 rHMGB1 signals via
receptor for advanced glycation
end-products (RAGE) to upregulate
collagen-I expression through the
PI3K–pAkt1/2/3 pathway in hepatic
stellate cells (HSCs). Rat HSCs were
treated with 50 nM rHMGB1 for 6 h.
Western blot analysis for intracellular
plus extracellular OPN and collagen-I
(A). HSCs were challenged with
rHMGB1 up to 6 h and western blot
analysis was performed for PI3K,
pAkt1/2/3 and Akt1/2/3 (B). Western
blot for pAkt1/2/3, pAkt1/2/3 and
intracellular plus extracellular
collagen-I in HSCs treated with
rHMGB1 in the presence or absence of
wortmannin or LY294002 (two PI3K
inhibitors) (C). Rage ablation was
performed in HSCs by transduction
with shRNA lentiviral particles and
isolation of stable clones expressing
the shRNA via puromycin
dihydrochloride selection. Cells were
treated with rHMGB1 for 6 h followed
by western blot analysis for RAGE,
PI3K, pAkt1/2/3, Akt1/2/3 intracellular
and extracellular collagen-I (D). The
results from the western blot analysis
are corrected by the specific loading
control and are expressed as
fold-change of the controls, which are
assigned a value of 1 and are given as
mean values±SEM; n=3/group in
experiments performed in triplicate
four times. *p<0.05, **p<0.01 and
***p<0.001 for rHMGB1 versus
control; •p<0.05, ••p<0.01 and
•••p<0.001 for cotreated or Rage
ablated versus rHMGB1 or Gfp.
Wild-type (WT) mice were injected CCl4
for 1 month along with non-immune
IgG or RAGE neutralising Ab. H&E
staining and collagen-I
immunohistochemistry (IHC) and
morphometry analysis showing that
neutralisation of RAGE protects mice
from liver fibrosis (E). The results are
expressed as fold-change of the IgG
group, which are assigned a value of 1
and are given as mean values±SEM;
n=3/group. ••p<0.01 for RAGE Ab
versus IgG. CV, central vein; PV, portal
vein.
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model of liver fibrosis along with genetic manipulation of Opn
in mice. In addition to an increase in co-localisation of OPN
and HMGB1, rather remarkable in hepatocytes, their expression
correlated with the extent of liver fibrosis in mice. Importantly,
fibrosis was significantly greater in chronic CCl4-injected
OpnHep Tg compared with WTand it was much lesser in Opn−/

− mice.3 Moreover, we observed that ageing OpnHep Tg mice
showed enhanced expression of hepatic OPN and HMGB1 and
developed spontaneous fibrosis3 in the absence of a profibro-
genic stimulus (see online supplementary figure S3). Overall,
these in vivo results suggested that OPN is upstream of HMGB1
and that the increase in OPN, likely driving HMGB1, plays a
major role in the pathogenesis of liver fibrosis in mice; yet, the
specific mechanism whereby HMGB1 could act as a profibro-
genic paracrine and/or autocrine DAMP remained unknown.

We have previously established two mechanisms whereby
OPN contributes to liver fibrosis in vivo. Since the colocalisation
studies in human and mice also suggested a possible role for
hepatocyte-derived HMGB1 in liver fibrosis, next we evaluated
the consequences of blocking HMGB1 in hepatocytes for the
development of liver fibrosis. We demonstrated that selective
ablation of Hmgb1 in hepatocytes partially prevented
CCl4-induced liver fibrosis in mice, which was also validated in
the BDL model.

To further define the paracrine involvement of hepatocyte-
derived OPN and HMGB1 in the upregulation of collagen-I
production by HSCs, cocultures of hepatocytes with HSCs were
established. These experiments demonstrated that hepatocytes
are a major source of OPN and HMGB1 in addition to a para-
crine role in increasing collagen-I production by HSCs. This
was further proven by the blocking effect of neutralising Abs to
OPN or HMGB1 and by hepatocyte-specific ablation of Opn or
Hmgb1 in the cocultures. In both cases, collagen-I synthesis in
HSCs was significantly reduced however far more when Hmgb1
was ablated. Hence, hepatocyte-derived OPN and HMGB1
target HSCs and drive their profibrogenic behaviour.

Once the role of hepatocyte-derived OPN and HMGB1 was
established, we then asked if intracellular OPN and HMGB1 in
HSCs could also play an autocrine role driving scarring. Since we
previously demonstrated that HSCs express OPN1 and the
present study revealed induction of HMGB1 under OPN treat-
ment, we next ablated both proteins. Analysis of the autocrine
effects resulting from (1) regulating Opn expression for HMGB1
production and (2) modulating Hmgb1 expression for collagen-I
synthesis suggested that intracellular OPN is also upstream of
HMGB1 in HSCs and regulates collagen-I expression.

Next, to dissect the molecular mechanism for the paracrine
effects of OPN and HMGB1 for the HSCs profibrogenic behav-
iour, we treated HSCs with rOPN or rHMGB1. We previously
showed that rOPN upregulates collagen-I production in HSCs
by binding αvβ3 integrin and activating the PI3K–pAkt1/2/3–
NFκB signalling pathway in addition to driving ductular reac-
tion and increasing TGF-β production in biliary epithelial
cells.1 3 Yet, in view of our data, we also considered that a
downstream target of OPN, such as HMGB1, could participate
in increasing collagen-I deposition thereby contributing to the
pathophysiology of liver fibrosis by regulating scarring.

Extracellular OPN induced HMGB1 and collagen-I expres-
sion in quiescent and activated HSCs and also promoted
HMGB1 translocation from the nucleus to the cytoplasm
driving collagen-I production by HSCs as demonstrated with
the transfection experiment using the constructs conditioning
HMGB1 subcellular localisation in response to stimuli. The con-
struct preventing HMGB1 acetylation in HSCs under rOPN

treatment suggested a key role of a PTM for collagen-I produc-
tion in this setting. Indeed, analysis of the potential PTMs
revealed extensive acetylation of HMGB1 in the cluster of eight
lysines (28–30, 180 and 182–185) under OPN treatment in
HSCs, which could explain the cytoplasmic increase in HMGB1
since acetylation prevents HMGB1 nuclear re-entry. To under-
stand how this modification occurred, next we measured HATs
and HDACs activity along with the expression of each of these
proteins. OPN lowered HDACs1/2 activity and acetylated
HMGB1 thus contributing to HMGB1 cytoplasmic localisation
and increase. Furthermore, OPN activated NOX and stimulated
O2

.− generation, which ultimately inhibited HDACs1/2 expres-
sion allowing HMGB1 acetylation and upregulating collagen-I
expression in HSCs. Thus, extracellular OPN can paracrinely
promote the autocrine effects of HSC-derived HMGB1 in
driving collagen-I deposition.

Finally, the human and mouse data along with the coculture
studies suggested that hepatocytes were a major source of
HMGB1, which was identified as downstream of OPN.
Of note, while hepatocytes secrete a considerable amount of
HMGB1,7 HSCs secrete it but to a much lesser degree. Next,
we demonstrated that extracellular HMGB1 per se also signals
to HSCs via RAGE signalling and activation of the PI3K–pAkt1/
2/3 pathway to upregulate collagen-I in HSCs. Therefore, RAGE
plays a major role in the HMGB1-mediated effects on collagen-I
synthesis in the setting of liver fibrosis.

While the involvement of HMGB1 in other liver diseases has
been reported,20–25 the role of HMGB1 in liver fibrosis has not
been fully evaluated to date. Hence, we have identified that
during the onset of liver fibrosis, the increase in OPN, and as a
consequence in HMGB1, drives scarring. As proposed in this
study (see online supplementary figure S4), the significant upre-
gulation of this alarmin has critical paracrine and autocrine
effects on HSCs and therefore it could be targeted to prevent or
slow down the fibrogenic process.

Overall, this study challenged our current view of the mechan-
isms driving liver disease by reinforcing the role of hepatic OPN
and HMGB1, a sterile DAMP, in the onset of liver fibrosis and
tested the novel hypothesis that during fibrogenesis the increase
in OPN, and as a consequence in HMGB1, acts as a paracrine
and autocrine signal to trigger scarring. Development of efficient
therapies for liver fibrosis must target the molecular mechanisms
driving early fibrosis related to hepatocellular injury to allow
rapid intervention. Importantly, HMGB1 has the advantage that,
unlike other proteins, provides a wider time frame for clinical
intervention due to its longer half-life.26 Thus, it is an attractive
target to prevent fibrosis progression. OPN and HMGB1 may
also participate in other events taking place in liver fibrosis such
as necrosis, inflammation and increased gut permeability. Finally,
due to the extent of their production in hepatocytes, it is likely
that the overall contribution of hepatocyte-derived OPN and
HMGB1 to scarring is far more relevant than that of HSCs. It
still remains an open question if their production in other liver
cells or in other organs is also relevant or perhaps synergistic for
liver fibrosis and if specific PTMs of HMGB1 could also condi-
tion the noxious effects of HMGB1 in the liver environment.

Correction notice This article has been corrected since it published Online First.
The Open Access licence has been added.
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Figure 6  rOPN activates NOX and inhibits HDACs1/2 promoting HMGB1 acetylation and 
translocation along with collagen-I up-regulation in HSCs. Rat HSCs were treated with rOPN for 6 h. 
Immunoprecipitation of intracellular HMGB1 and immunoblotting for acetylated lysines (A). Rat HSCs 
were treated with rOPN for 2 h. Western blot analysis for PCAF and p300 (B). Rat HSCs were treated with 
rOPN for 1 and 2 h. Western blot analysis for HDACs1-6 (C). NOX activity in rat HSCs treated with rOPN 
for 6 h alone or pretreated for 0.5 h with apocynin or DPI, two NOX inhibitors. The percentage of DHE 
positive cells was measured by flow cytometry as an indirect measurement of O2

.- production (D). Rat 
HSCs were treated with rOPN for 6 h in the presence or absence of apocynin or DPI. Western blot analysis 
of HDACs1/2 along with intra- and extracellular collagen-I (E). The results from the western blot analysis 
are corrected by the specific loading control and are expressed as fold-change of the controls, which are 
assigned a value of 1 and are mean values±SEM; n=3/group in experiments performed in triplicate four 
times. *P<0.05, **p<0.01 and ***p<0.001 for rOPN versus control; •p<0.05 and ••p<0.01 for co-
treated versus rOPN.
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SUPPLEMENTARY MATERIAL 

SUPPLEMENTARY MATERIAL AND METHODS 

General methodology. Details on general methodology such as ALT and AST activities, H&E 

staining, OPN, HMGB1 and collagen-I IHC, western blot, DHE, adenoviral infection, mRNA 

isolation and qPCR for genotyping are described in previous publications from our laboratory [1, 

2, 3]. The source of commercially available Abs used in the western blot analysis can be found 

in Supplementary Table 1. The mouse embryonic skin fibroblast (MEF) cell line was obtained 

from HMGBiotech (Milan, Italy). Primary hepatocytes from WT, Opn-/- and Hmgb1ΔHep mice 

injected with either MO or CCl4; primary HSCs from WT and Opn-/- mice and primary rat HSCs 

were isolated and co-cultured as previously [3, 4]. Nuclear and cytoplasmic proteins were 

extracted according to the method of Dignam et al [5]. Silencing of Rage and Tlrs2/4/9 was 

performed using conventional siRNA transfection (Rage [sc-106985], Tlr4 [sc-15001] and Tlr9 

[sc-270187] were from Santa Cruz Biotechnology (Santa Cruz, CA); Tlr2 [sc160440] was from 

Life Technologies (Carlsbad, CA). ShRNA lentiviral particles to silence Rage and Gfp, the latter 

used as control, were from Santa Cruz Biotechnology. 

 

Human samples. Dr. Theise provided paraffin-embedded archived human liver biopsies from 

de-identified controls (healthy liver explants) and from post-transplant patients with clinically 

proven HCV-induced fibrosis scored according to the modified Ishak staging for fibrosis which 

also parallels the Metavir staging system [6]. Even if nowadays is not the standard of care, it 

was at the time of sample collection. Biopsies were repeated after several years without 

treatment to evaluate for progression and a new need to treat. These archived samples were 

IRB approved and no patient information was disclosed.  

 

Induction of liver injury. 10-wks old male WT, Opn-/- and OpnHep Tg littermates, Hmgb1ΔHep 

and control littermates were used. We used the CCl4 and the BDL well-established models of 



liver fibrosis. In the CCl4 model, mice were i.p. injected twice a wk with 0.5 ml/kg b. wt. of CCl4 or 

equal volume of mineral oil (MO) for 1 mo and they were sacrificed 48 h after the last CCl4 

injection to avoid an acute-phase response over chronic liver injury. In one experiment, mice 

were co-treated with non-immune IgG or RAGE neutralizing Ab i.p. injected 1 h before every 

CCl4 injection for 1 mo. In the BDL model, Hmgb1ΔHep and control littermates underwent ligation 

of the common bile duct to induce cholestasis or sham operation (control) and were sacrificed 2 

wks later. A set of WT and OpnHep Tg mice was allowed to age for 1 yr and samples were 

collected for analysis of spontaneous fibrogenesis.  

 

Pathology. In all experiments, the entire left mouse liver lobe was collected and fixed in 10% 

neutral-buffered formalin and processed into paraffin sections for H&E or IHC. The scores for 

centrilobular necrosis were 1 = hepatocyte necrosis affecting only zone 3, 2 = in addition to 

zone 3 necrosis, occasional bridging necrosis was seen and 3 = pronounced bridging and 

confluent necrosis. Inflammation was noted to be lymphocytes present in the lobules and were 

scored as follows: 1 = rare foci, 2 = up to 5 foci and 3 when there were >5 foci. Ballooning 

degeneration was identified when hepatocytes were enlarged in most cases to more than twice 

the size of its neighboring cells. In addition, the cytoplasmic membrane became rounded 

instead of the usual hexagonal shape of normal hepatocytes. Most of the cytoplasm appeared 

empty except for a few irregular wisps of pink material representing damaged cytoplasmic 

content. The degree of fibrosis ranged from 0 to 4 and patterned after the Brunt system [7]. 

Briefly, it was as follows: 1 = perisinusoidal/perivenular fibrosis alone, 2 = 

perisinusoidal/perivenular fibrosis plus portal fibrosis, 3 = bridging fibrosis and 4 = cirrhosis. In 

the BDL model, ductular reaction was noted to be proliferation of bile ductules at the margins of 

the portal tracts and the score was 1 = rare bile ductules present, 2 = irregular buds of bile 

ductules affecting some portal tracts and 3 = when bile ductules are more prominent and affect 

the majority of portal areas and/or strings of bile ductular epithelial cells were seen intermingled 



with hepatocytes. The assessment of the above scores was uniformly performed under 100x 

magnification. 

 

Immunohistochemistry. The 2A1 OPN Ab was used on IHC and on immunofluorescence. The 

collagen-I Ab was from Chemicon International (Billerica, MA) and was used on IHC. The 

HMGB1 Ab was from Abcam and was used on IHC and on immunofluorescence. Specificity of 

the OPN and HMGB1 Abs was validated using Opn-/- and Hmgb1ΔHep mice, respectively (not 

shown). The HNF4α and the desmin Abs were from Santa Cruz Biotechnology. In the IHC, 

reactions were developed using the Histostain Plus detection system (Life Technologies, 

Waltham, MA). For the OPN, HMGB1 and collagen-I IHC computer-assisted morphometry 

assessment, the integrated optical density (IOD) was calculated from 10 random fields per 

section containing similar size portal tracts and central veins at 100x and using Image-Pro 7.0 

Software (Media Cybernetics, Bethesda, MD). The results were averaged and expressed as 

fold-change of the controls. To quantify the cellular localization of HMGB1, the intensity of the 

red area corresponding to HMGB1 positive staining in the scanned fields was averaged and 

considered the total HMGB1 positive staining. Next, the software was set to select all nuclei and 

the intensity of the stained red area corresponding to HMGB1 nuclear positive staining in the 

scanned fields was averaged and considered the nuclear HMGB1 staining. The nuclear staining 

was then subtracted from the total staining to calculate the cytoplasmic HMGB1 staining. The 

results were averaged and expressed as fold-change of the controls. The HMGB1 expression 

ratios were calculated by morphometry analysis as above in 20 fields per slide at 200x 

magnification and are expressed as nuclear-to-total and as cytoplasmic-to-total HMGB1 

expression.  

 

Cell treatments. Due to the almost full homology of Hmgb1 and Opn between rat and mice, in 

the majority of the experiments we used primary rat HSCs due to their greater abundance. 



Primary rat (250,000 cells/well) or mouse (10,000 cells/well) HSCs were seeded on 6-well or 12-

well plates in DMEM/F12 with 10% FBS. Cells were cultured using DMEM-F12 for 4 to 7 d, 

which was replaced by serum-free DMEM-F12 prior to either endotoxin-free human rOPN 

treatment (1433-OP-050/CF, R&D Systems, Minneapolis, MN) or rHMGB1 (1690-HM, R&D 

Systems). Time-course (5 min-48 h) and dose-response (5-500 nM) experiments along with 

viability assays were carried out to determine the final concentration of rOPN and of rHMGB1 

(both at 50 nM) and the best time-point for collagen-I induction (both at 6 h). Hmgb1-/- MEFs 

were used since Hmgb1-/- mice are embryonically lethal and HSCs cannot be isolated from 

them; yet, they have similar phenotype than HSCs. The following treatments were added to the 

cells 1 h prior to incubation with rOPN and rHMGB1: 0.5 μM wortmannin (Calbiochem, San 

Diego, CA), 0.5 μM LY294002 (Cell Signaling, Danvers, MA), 0.5 μM apocynin (Fluka, St. Louis, 

MO), 0.5 μM diphenyleneiodonium chloride (Sigma, St. Louis, MO) or 100 μM cycloheximide 

(Sigma). The following neutralizing antibodies were added to the cells for 6 h: 5 µg/ml HMGB1 

Ab (Shino-Test, Tokyo, Japan) or 5 µg/ml OPN Ab clone 2C5 (provided by Dr. David T. 

Denhardt). Co-cultures of hepatocytes and HSCs were established as described in earlier 

publications [4, 8, 9].  

 

Immunofluorescence. Primary mouse HSCs (1,000 cells/well) were seeded in DMEM/F12 with 

10% FBS on 12-well plates containing round cover slips on the bottom of the wells. The medium 

was replaced by serum-free DMEM/F12 overnight prior to the specific treatments following 

which the cells were gently rinsed with 1x PBS, fixed with 4% paraformaldehyde and 

permeabilized with 0.5% Triton X-100. After blocking with 5% FBS, the primary Abs used were 

HMGB1 (Abcam, Cambridge, MA) and collagen-I (Millipore, Billerica, MA) and then the Alexa-

488 conjugated goat anti-mouse IgG and Alexa-568 conjugated goat anti-mouse IgG (Life 

Technologies). Images were acquired by confocal microscopy using a 630x 1.4NA with 

immersion oil objective at our Microscopy Shared Resource Facility. 



 

Analysis of serum and liver HMGB1 by ESI-LC-MS. All chemicals and solvents used were of 

the highest available grade (Sigma). Samples were pre-cleared with 50 µl protein G-Sepharose 

beads for 1 h at 4C. HMGB1 present in serum or liver was immunoprecipitated with 5 µg of 

rabbit anti-HMGB1 for 16 h at 4C as previously described [10]. For the analysis of HMGB1 

PTMs, free thiol groups within HMGB1 were alkylated for 90 min with 10 mM iodoacetamide at 

4°C. Cysteine residues in disulfide bonds were then reduced with 30 mM dithiothreitol at 4°C for 

1 h followed by alkylation of newly exposed thiol groups with 90 mM NEM at 4°C for 10 min. 

Samples were subjected to trypsin (Promega, Madison, WI) or GluC (New England Biolabs, 

Ipswich, MA) digestion according to manufacturer’s instructions and de-salted using C18 zip-tips 

(Millipore). Characterization of whole protein molecular weights, acetylated lysine residues or 

redox modifications on cysteine residues within HMGB1 were determined as described 

previously by whole protein ESI or tandem mass spectrometry (MS/MS) [11, 12, 13] using either 

an AB Sciex QTRAP 5500 or an AB SciexTripleTOF 5600 (Sciex Inc., Framingham, MA). 

Peptide analysis was determined using an AB Sciex QTRAP 5500 equipped with a NanoSpray 

II source by in-line liquid chromatography using a U3000 HPLC System (Dionex, CA), 

connected to a 180 µm by 20 mm nanoAcquity UPLC C18 trap column and a 75 µm by 15 cm 

nanoAcquity UPLC BEH130 C18 column (Waters, Milford, MA) via reducing unions. A gradient 

from 0.05% TFA (v/v) to 50% ACN/0.08% TFA (v/v) in 40 min was applied at a flow rate of 200 

nL/min. The ion spray potential was set to 2,200-3,500 V, the nebulizer gas to 19 and the 

interface heater to 150°C. 

 

Vectors transfection. The following vectors were used in the transfection studies: 1) pGFP, an 

empty vector to serve as a negative control; 2) Hmgb1.WT.GFP, containing NLS1 and NLS2 to 

overexpress HMGB1 and allow response to stimuli that could drive the protein to the cytoplasm; 



and 3) Hmgb1.NLS1/2(8K8A).GFP, containing all 8 lysines in the two NLS mutated to 

alanines and that cannot be acetylated hence resulting in nuclear HMGB1 localization. These 

mutants were provided by Dr. Marco E. Bianchi (San Raffaele University, Milan, Italy) [14]. 

HSCs were transfected with these vectors using Lipofectamine 2000 (Life Technologies) as a 

carrier for 48 h and then treated with rOPN for 6 h. 

 

NOX oxidase activity. HSCs were subjected to three freeze-thaw cycles in 50 mM phosphate 

buffer containing 1 mM EGTA, 150 mM sucrose and a cocktail of protease inhibitors at pH 7.4. 

NOX activity was measured using the indirect lucigenin-derived chemiluminescence method 

[15]. The reaction was initiated by adding 100 μg of protein to 100 μl of reaction buffer 

containing 100 μM NADPH and 5 μM lucigenin. Luminescence was recorded every 3 min over a 

period of 20 min in a luminescence reader. 

 

IP:IB. 100 µg of total protein were incubated with 1 µg of HMGB1 Ab for 1 h at 4C in a rocking 

device to enable binding between the protein and the Ab. Then, 20 µl of protein A/G PLUS-

Agarose (Santa Cruz Biotechnology) were added and incubated for 3 h at 4C in a rocking 

device. Samples were washed three times with RIPA buffer and spun down at 12,000 rpm for 2 

min. Samples were resuspended in 20 µl of loading buffer, boiled for 7 min and spun down at 

12,000 rpm for 2 min. The supernatant was analyzed for acetylated lysines and HMGB1 loading 

by western blot. 

 

  



SUPPLEMENTARY RESULTS 

Hmgb1 ablation in hepatocytes partially prevents BDL-induced liver fibrosis in mice. 

Hmgb1ΔHep and control littermates were subjected to BDL. H&E staining and the pathology 

scores demonstrated less necrosis, inflammation, hepatocyte ballooning degeneration and 

fibrosis in BDL Hmgb1ΔHep compared to control littermates (Supplementary Figure 1A, top and 

Supplementary Figure 1B). Hmgb1 deletion in hepatocytes was confirmed by IHC in livers from 

Hmgb1ΔHep and control littermates and IHC revealed less collagen-I expression in CCl4-injected 

Hmgb1ΔHep compared to control littermates (Supplementary Figure 1A, middle). Hmgb1 ablation 

did not affect OPN expression confirming that OPN is upstream of HMGB1 (Supplementary 

Figure 1A, bottom). 

 

rHMGB1 signals via RAGE to up-regulate collagen-I expression in HSCs. Last, since 

HMGB1 binds several receptors, of which RAGE [16] and TLRs2/4/9 [17, 18, 19] have been 

described to play a role in the setting of liver fibrosis, we evaluated whether the HMGB1 effects 

on collagen-I were receptor-mediated. To this end, we ablated Rage or Tlrs2/4/9 using siRNA. 

HSCs were treated with rHMGB1 and collagen-I expression was evaluated. RAGE but not 

TLRs2/4/9 was critical for the effects of rHMGB1 on collagen-I up-regulation in HSCs since 

western blot analysis showed up-regulation of collagen-I following rHMGB1 treatment but not 

after Rage ablation (Supplementary Figure 2).   

 

Aging OpnHep Tg mice show elevated HMGB1 expression and develop spontaneous 

fibrosis. We previously showed that OpnHep Tg mice developed spontaneous liver fibrosis over 

time in the absence of an exogenous profibrogenic stimuli [1], which was confirmed by western 

blot analysis for collagen-I protein (Supplementary Figure 3A). Thus, we asked whether 

overexpression of OPN in hepatocytes could also up-regulate HMGB1 expression and perhaps 

determine its cellular compartmentalization in these mice. We found significant increase in OPN 



and HMGB1 expression as depicted by western blot, IHC and morphometry analysis 

(Supplementary Figure 3B-3C) along with a decrease in the ratio of nuclear-to-total and an 

increase in the ratio of cytoplasmic-to-total HMGB1 protein expression (Supplementary Figure 

3D) in aging OpnHep Tg compared to WT mice. 
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SUPPLEMENTARY TABLE 

Supplementary Table 1. List of commercially available Abs used. 

Target Ab Source 

Acetylated Lysines 9441 Cell Signaling 

Actin sc-1616 Santa Cruz Biotechnology 

Akt1/2/3 sc-1618 Santa Cruz Biotechnology 

Calnexin sc-6465 Santa Cruz Biotechnology 

Collagen-I MAB3391 Chemicon 

Desmin sc-23879 Santa Cruz Biotechnology 

GAPDH sc-20357 Santa Cruz Biotechnology 

HDAC1 5356 Cell Signaling 

HDAC2 5113 Cell Signaling 

HDAC3 3949 Cell Signaling 

HDAC4 7628 Cell Signaling 

HDAC5 2082 Cell Signaling 

HDAC6 7558 Cell Signaling 

HMGB1 (IHC/ICC, IF) ab18256 Abcam 

HMGB1 (WB) sc-56698 Santa Cruz Biotechnology 

HNF4α sc-6556 Santa Cruz Biotechnology 

Nucleoporin p62 610497 BD Biosciences 

OPN sc-21742 Santa Cruz Biotechnology 

p300 ab3164 Abcam 

p-Akt1/2/3 sc-7985-R Santa Cruz Biotechnology 

PCAF 3378 Cell Signaling 

PI3K sc-7189 Santa Cruz Biotechnology 

RAGE sc-5563 Santa Cruz Biotechnology 

RAGE AF1179 R&D Systems 

β-Tubulin T4026 Sigma 

 

  



SUPPLEMENTARY FIGURES 

Supplementary Figure 1. Hmgb1 ablation in hepatocytes partially prevents BDL-induced 

liver fibrosis in mice. Hmgb1ΔHep and control littermates were bile duct ligated for 2 wks. H&E 

staining (A, top) and pathology scoring (B) show lower necrosis, inflammation, hepatocyte 

ballooning degeneration, fibrosis and ductular reaction in Hmgb1ΔHep compared to control 

littermates. IHC shows reduced HMGB1 and collagen-I deposition in livers from BDL Hmgb1ΔHep 

compared to control littermates (A, middle) whereas OPN expression remained similar (A, 

bottom). The results are expressed as fold-change of the MO-injected control littermates, which 

are assigned a value of 1 and are mean values ± SEM; n=8/group. •p<0.05, ••p<0.01 and 

•••p<0.001 for BDL Hmgb1ΔHep vs. control littermates. 

  

Supplementary Figure 2. rHMGB1 signals via RAGE to up-regulate collagen-I expression 

in HSCs. Rage or Tlrs2/4/9 were ablated using siRNA. HSCs were treated with rHMGB1 and 

collagen-I expression was evaluated by western blot. The results are expressed as fold-change 

of the scrambled siRNA control, which is assigned a value of 1 and are mean values.  

 

Supplementary Figure 3. Aging OpnHep Tg mice show elevated HMGB1 expression and 

develop spontaneous fibrosis. OPN, HMGB1 and collagen-I expression in livers from aging 

OpnHep Tg compared to WT mice. Western blot analysis for OPN, HMGB1 and collagen-I in total 

liver from 1 yr old WT and OpnHep Tg mice. The results are expressed as fold-change of the WT 

mice, which are assigned a value of 1. Results are mean values ± SEM. n=8/group. •••p<0.001 

for OpnHep Tg vs. WT mice (A). IHC analysis of OPN (yellow arrows) and HMGB1 (green 

arrows) in liver from 1 yr old WT and OpnHep Tg mice (B). Total OPN and HMGB1 morphometry 

analysis (C) and quantification of total, nuclear and cytoplasmic as well as the ratios of nuclear-

to-total and of cytoplasmic-to-total HMGB1 (D). The results from the morphometry analysis are 



expressed as fold-change of the WT mice, which are assigned a value of 1 and are shown as 

mean values ± SEM. n=8/group. ••p<0.01 and •••p<0.001 for OpnHep Tg vs. WT mice. 

 

Supplementary Figure 4. Proposed mechanism. We previously demonstrated that chronic 

liver injury and reactive oxygen species induce OPN expression in hepatocytes, HSCs, biliary 

epithelial cells and oval cells. We showed that OPN engages αvβ3 integrin and signals via the 

PI3K-pAkt1/2/3-NFκB pathway leading to up-regulation of intra- and extracellular collagen-I 

protein in HSCs (black and white-labeled pathway, Hepatology 2012;55(2):594-608). We also 

established that OPN reduces hepatocyte proliferation and activates the oval cell compartment 

giving rise to biliary epithelial cells. Furthermore, we identified that OPN increases and/or 

maintains TGFβ expression in biliary epithelial cells, which along with OPN, signals to HSCs to 

increase their pro-fibrogenic potential (black and white-labeled pathway, Gut 2014;63(11):1805-

18). In the present study, we demonstrate significant co-induction of OPN and HMGB1 following 

liver injury. Additionally, we show that OPN is upstream of HMGB1 in hepatocytes and HSCs. 

Our hypothesis was that OPN could participate in the pathogenesis of liver fibrosis by increasing 

HMGB1 to up-regulate collagen-I expression. We now show that well-established liver fibrosis 

along with marked induction of HMGB1 occurs in CCl4-injected OpnHep Tg yet it is less in WT 

and almost absent in Opn-/- mice. Hmgb1 ablation in hepatocytes (Hmgb1ΔHep) protects from 

CCl4-induced liver fibrosis. Co-culture with hepatocytes that secrete OPN plus HMGB1 and 

challenge with either rOPN or rHMGB1 enhances collagen-I expression in HSCs, which is 

blunted by neutralizing Abs or by Opn and Hmgb1 ablation. rOPN induces acetylation of 

HMGB1 in HSCs due to increased NADPH oxidase activity and the associated decrease in 

HDACs1/2 leading to up-regulation of collagen-I. Last, we demonstrate that rHMGB1 signals via 

RAGE activating the PI3K-pAkt1/2/3 pathway to up-regulate collagen-I (Please, see the 

strategies used to prove our hypothesis written in blue font). 
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