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Abstract
Objective  Most prognostic models for primary 
sclerosing cholangitis (PSC) are based on patients 
referred to tertiary care and may not be applicable for 
the majority of patients with PSC. The aim of this study 
was to construct and externally validate a novel, broadly 
applicable prognostic model for transplant-free survival 
in PSC, based on a large, predominantly population-
based cohort using readily available variables.
Design T he derivation cohort consisted of 692 patients 
with PSC from the Netherlands, the validation cohort 
of 264 patients with PSC from the UK. Retrospectively, 
clinical and biochemical variables were collected. We 
derived the prognostic index from a multivariable Cox 
regression model in which predictors were selected and 
parameters were estimated using the least absolute 
shrinkage and selection operator. The composite end 
point of PSC-related death and liver transplantation 
was used. To quantify the models’ predictive value, 
we calculated the C-statistic as discrimination index 
and established its calibration accuracy by comparing 
predicted curves with Kaplan-Meier estimates.
Results T he final model included the variables: PSC 
subtype, age at PSC diagnosis, albumin, platelets, 
aspartate aminotransferase, alkaline phosphatase and 
bilirubin. The C-statistic was 0.68 (95% CI 0.51 to 0.85). 
Calibration was satisfactory. The model was robust in the 
sense that the C-statistic did not change when prediction 
was based on biochemical variables collected at follow-
up.
Conclusion T he Amsterdam-Oxford model for PSC 
showed adequate performance in estimating PSC-
related death and/or liver transplant in a predominantly 
population-based setting. The transplant-free survival 
probability can be recalculated when updated 
biochemical values are available.

Introduction
Primary sclerosing cholangitis (PSC) is an insid-
ious, progressive cholestatic liver disease in which 
inflammation of the intrahepatic and extrahe-
patic bile ducts leads to sclerosis, obstruction and 
destruction of the biliary tract. This results in 
chronic cholestasis, biliary fibrosis and eventually 
liver cirrhosis. PSC affects predominantly men 
(male to female ratio 2:1) at a mean age of 40 years, 
and up to 70% of patients suffer from concomi-
tant IBD.1 PSC disease course is highly variable, 
with a reported median transplant-free survival 

from diagnosis onwards, ranging from 13 years in 
patients seen at tertiary referral centres to 21 years 
in a population-based cohort.1 Various drugs have 
been studied in PSC, but none has been shown to 
be efficacious in halting disease progression.2 For 
patients suffering from end-stage liver disease or 
severe complications of cholestasis, the only cura-
tive option is liver transplantation (LTx).3

In the absence of medical treatment options for 
PSC, determining prognosis is important to aid in 
patient counselling and management, for instance, 
with regard to optimal patient selection and timing 

Significance of this study

What is already known on this subject?
►► Currently, available prognostic models in 
primary sclerosing cholangitis (PSC) are based 
on liver transplant referral centre cohorts, 
restricting their prognostic value to specific 
patient groups.

►► The most widely used prognostic model in PSC 
is the Mayo risk score, which is largely based on 
advanced cases, has a horizon of around 4 years 
and only predicts death.

What are the new findings?
►► The novel Amsterdam-Oxford prognostic 
model for PSC is based on seven objectively 
measured and readily available variables: 
PSC subtype, age at PSC diagnosis, albumin, 
platelets, aspartate aminotransferase, alkaline 
phosphatase and bilirubin.

►► Long-term transplant-free survival probabilities 
in PSC can accurately be predicted using the 
Amsterdam-Oxford model.

►► The performance of the Amsterdam-Oxford 
model remains stable when updated laboratory 
values are used for prediction in the first few 
years after diagnosis.

How might it impact on clinical practice in the 
foreseeable future?

►► The novel Amsterdam-Oxford prognostic model 
for PSC may prove a useful tool for patient 
counselling and healthcare budget planning.

►► In addition, it may be used as a tool for risk 
stratification in clinical trials, and its prognostic 
index may even be explored as a candidate 
surrogate end point.
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of listing for LTx. The latter is one of the most expensive treat-
ments currently available, hence accurate prediction of future 
expenditure is of great importance to healthcare officials. 
Furthermore, an accurate prognostic model may serve as a tool 
for risk stratification in clinical trials and its prognostic index 
(PI) may even be explored as a candidate surrogate end point.

Previously, eight prognostic models for PSC have been 
developed which combined markers for disease progression. 
(see  online  supplementary table 1).4–11 Most of these models 
were exclusively based on liver transplant referral centre cohorts, 
and their predictive value may be restricted to specific patient 
groups. In addition, definition of end points differed between 
studies, and only two of these models were externally validated. 
(see online supplementary table 1).8 12

At present, the most widely used prognostic model in PSC is 
the Mayo risk score, based on the variables age, bilirubin, aspar-
tate aminotransferase (AST), variceal bleeding and albumin.8 
The time of origin in this study was set at date of referral instead 
of date at diagnosis, and this model’s prediction is limited to 
4 years, and performs best in patients with end-stage PSC.8 In 
addition, the model only estimates time to (all cause) death, 
and not time to LTx.8 Death was projected for those patients 
that underwent LTx by making an assumption of how long they 
would have lived had they not undergone LTx. Lastly, 25% of 
patients were recruited from the placebo and treatment arm of 
an ursodeoxycholic acid trial, which was justified by virtue of the 
negative outcome of the trial.8 However, ursodeoxycholic acid 
has an inherent effect on liver biochemistry, hence it may have 
influenced the prognostic value of the variables in part of the 
derivation patients.13–15

The aim of this study was to construct and externally vali-
date a novel and broadly applicable prognostic model for trans-
plant-free survival in PSC, consisting of readily available disease 
characteristics and biochemical variables, based on a large, 
predominantly population-based cohort.

Methods
Study design and patients
Derivation cohort 
The derivation cohort consisted of all patients seen in 44 
hospitals that were located in a geographically defined area of 
six adjacent provinces, comprising 50% of the Dutch popula-
tion (2007: 7 758 980 inhabitants) (40 basic care centres and 
4 academic centres without transplant facilities) and that were 
alive at January 2000.

Additionally we included 44 patients from a referral centre 
for LTx outside the geographically defined area. This way we 
provided a derivation cohort with a case mix that is as represen-
tative as possible for most PSC patient series.

Validation cohort 
The validation cohort included all patients with PSC that 
visited the John Radcliffe hospital, Oxford, UK, from 1981 
onwards. During time of patient inclusion, this centre served 
as a non-transplant tertiary care liver centre. Patients that did 
not have follow-up in this hospital after PSC diagnosis were 
excluded from the validation cohort.

Diagnostic inclusion criteria
PSC diagnosis was established according to the European Asso-
ciation for the Study of the Liver guidelines.16 Both small and 
large duct patients were included. A diagnosis of autoimmune 
hepatitis (AIH) overlap syndrome (PSC-AIH) was made in 

patients with a characteristic cholangiogram who, in addition, 
met the simplified AIH criteria.17 IBD diagnosis was based on the 
Lennard-Jones criteria.18

Data collection
Data of clinical and biochemical variables were retrospectively 
retrieved from patient records. Biochemical parameters that 
were collected at time of diagnosis (±3 months) included AST, 
alanine aminotransferase (ALT), alkaline phosphatase (ALP), 
gamma-glutamyl transpeptidase (γGT), total bilirubin, albumin 
and platelets. Follow-up liver biochemistry values were collected 
for AST, ALT, ALP and total bilirubin during the first three years 
after diagnosis in patients included in the derivation cohort. 
For patients included in the validation cohort, follow-up liver 
biochemistry values were collected for all biochemistry variables 
during the entire length of follow-up.

Statistical analysis
Patient characteristics were summarised either as median and 
IQR, or in percentages. As assays may vary between hospitals 
and over time, biochemical variables were expressed as ratio of 
upper limit of normal (xULN) or lower limit of normal (xLLN). 
Since these ratios can only have positive values and were posi-
tively skewed, we applied a base 10 logarithmic transformation 
to all biochemical variables. Missing values were imputed with 
multivariate imputation by chained equations (MICE),19 and 
20 imputed data  sets were created. (Methods are described in 
online supplementary appendix.)

The date of PSC diagnosis, defined by the first pathological 
magnetic resonance cholangiography, endoscopic retrograde 
cholangiography or liver biopsy, was used as start of follow-up. 
A composite clinical end point was defined, composed of LTx-re-
lated or PSC-related death (death from end-stage liver failure, 
death from liver surgery, death from cholangiocarcinoma or 
death from colorectal carcinoma). Data on LTx and death were 
retrieved from the cohort database.1 In case no end point was 
reached, individuals were censored at the date of last follow-up 
at the outpatient clinic or—for the derivation cohort—end of 
the study data collection (January 2012), whichever came first.

All routinely available clinical and biochemical variables that 
were regarded potentially relevant by expert opinion were 
assessed as potential predictors. This included age at PSC diag-
nosis, PSC subtype, sex, IBD type, AIH-overlap syndrome, 
ursodeoxycholic acid use, AST, ALT, ALP, bilirubin, γGT, 
albumin and  platelets. Since treatment with corticosteroids 
and other immunosuppressant agents have not demonstrated 
any improvement in disease activity or in the outcome of PSC, 
medical therapy options (with the exemption of ursodeoxycholic 
acid use) were not included as potential predictors.16 20

First, the functional form of the relation between the biochem-
ical variables and the risk of the composite end point was inves-
tigated in univariate Cox models by means of restricted cubic 
splines.21 Additional variable transformation was performed if 
strong non-linear effects were shown.

Next, a multivariable Cox regression model was fitted via the 
least absolute shrinkage and selection operator (Lasso). This 
penalised likelihood approach creates a model in which several 
variables are set to zero, whereas others are shrunken to zero 
to avoid overfitting.22 Lasso’s penalty parameter ‘lambda’ was 
chosen based on the discriminative power of the model, using 
optimism adjusted Harrell’s C-statistic.23 We chose the lambda 
based on the criterion that the resulting model has as few predic-
tors as possible while still yielding a C-statistic that is no more 
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than 10% below the optimal one. (Methods are  described in 
online supplementary appendix.)

Since we chose a penalty that was larger than the one that gave 
the highest area under the curve, the parameters may shrink too 
much. An additional adjustment factor was computed to compen-
sate for this overshrinkage. First, we combined the parameter 
estimates from the fitted model and the values of the variables to 
calculate a ‘raw’ PI per individual. The ‘raw’ PI was then used as 
a single predictor, and the coefficient of this Cox model served 
as adjustment factor. The final PI was obtained by multiplying 
the ‘raw’ PI by the adjustment factor. (Methods are described 
in online  supplementary appendix.) The PI only reflects rela-
tive hazards but does not give absolute transplant-free survival 
probability, which is more informative in a clinical setting and is 
needed for calibration. These can be estimated at any follow-up 
time if we have an estimate of the baseline ‘survival’.24 (Methods 
are described in online supplementary appendix.)

The model performance was evaluated based on the discrim-
inative power and calibration accuracy in both derivation and 
validation cohort. The discriminative power is the ability of the 
model to distinguish high-risk patients from low-risk patients. 
This was assessed in both the derivation and validation cohort 
via Harrell’s C-statistic.23 The C-statistic was calculated in each 
of the 20 imputed data  sets, and then averaged with Rubin’s 
rule.25 26 For assessing calibration accuracy, we divided patients 
into four risk groups, based on their PIs, using threshold points 
at 16th, 50th and 84th percentiles in the derivation data.24 Next, 
we compared the averaged predicted survival probability with 
the observed Kaplan-Meier survival probability in the four risk 
groups. For the validation cohort, we recalibrated the baseline 
survival before estimating the probability of survival for each 
individual. (Methods are  described in online  supplementary 
appendix.)

We also assessed whether the discriminative power of the 
model remained stable over time by calculating the C-statistic 
using updated data at 1, 2 and 3 years after diagnosis.

Statistical analyses were performed using R V.3.1.2,27 and 
packages MICE, rms, glmnet and ggplot2. The reporting of this 
prognostic model study followed the recommendations in Stey-
erberg et al and Transparent Reporting of a multivariable predic-
tion model for Individual Prognosis Or Diagnosis (TRIPOD) 
statement (TRIPOD checklist can be found in the online supple-
mentary appendix).28 29

Results
Patient characteristics
The derivation cohort included 692 patients of which 447 (65%) 
were male, and 630 (91%) were diagnosed with large duct PSC. 
The median age at PSC diagnosis was 37 years (IQR 27–49). The 
median follow-up time was 110 months (IQR 69–184) (table 1).

The validation cohort consisted of 264 patients, of which 
165 (63%) were male. A total of 231 (88%) patients had large 
duct PSC and the median age at PSC diagnosis was 45 (IQR 
33–57) years. The median follow-up time was 103 months (IQR 
53–153) (table 1).

The transplant-free survival probability of patients included 
in the derivation cohort was slightly lower compared with the 
validation cohort (figure 1).

Laboratory values represent measured values at time of diag-
nosis (±3 months), missing values represent the amount of missing 
data at time of diagnosis (±3 months). Follow-up laboratory values 
were available for most individuals (not depicted in this table) and 
used to impute laboratory values at time of diagnosis. Imputed 
(laboratory) data were used for model development.

Prognostic model development
Coding of predictors
For categorical predictors (PSC subtype, sex, IBD type, 
AIH-overlap syndrome, ursodeoxycholic acid use), dummy vari-
ables were created.

It was observed that the relationship between platelets and 
outcome followed a U-shaped pattern, with a turning point 

Table 1  Patient characteristics at diagnosis

Derivation cohort (n=692) Missing values (n (%)) Validation cohort (n=264) Missing values (n (%))

Male (n (%)) 447 (65) 165 (63)

Large duct PSC (n (%)) 630 (91) 231 (88)

Age at diagnosis PSC (years) (median (IQR)) 37 (27–49) 45 (33–57)

AIH overlap (n (%)) 37 (5) 5 (2)

IBD (n (%)) 480 (70) 195 (74)

UC (n (%)) 373 (54) 143 (54)

Crohn’s disease (n (%)) 89 (13) 39 (15)

Unspecified (n (%)) 18 (3) 13 (5)

Ursodeoxycholic acid (n (%))* 326 (80) 281 (41)

Follow-up time (months) (median (IQR)) 110 (69–184) 103 (53–153)

PSC-related death (n (%)) 71 (10) 37 (14)

Liver transplantation (n (%)) 121 (18) 18 (7)

Alkaline phosphatase (xULN) (median (IQR)) 1.97 (1.43–3.28) 255 (37) 2.27 (1.27–3.83) 177 (67)

Aspartate aminotransferase (xULN) (median (IQR)) 1.55 (1.0–3.03) 169 (24) 1.21 (0.79–2.05) 198 (75)

Alanine aminotransferase (xULN) (median (IQR)) 2.29 (1.34–4.66) 268 (39) 1.40 (0.88–2.58) 238 (90)

Bilirubin (xULN) (median (IQR)) 0.82 (0.53–1.71) 208 (30) 0.71 (0.47–1.29) 178 (67)

Gamma-glutamyl transpeptidase (xULN) (median 
(IQR))

6.11 (3.36–11.88) 282 (41) 7.15 (1.98–14.30) 210 (80)

Albumin (xLLN) (median (IQR)) 1.14 (1.02–1.23) 312 (45) 1.23 (1.11–1.31) 182 (69)

Platelets (xLLN) (median (IQR)) 1.79 (1.36–2.29) 375 (54) 1.89 (1.53–2.75) 189 (71)

AIH, autoimmune hepatitis; PSC, primary sclerosing cholangitis; xLLN, lower limit of normal; xULN, upper limit of normal.
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around 3.16xLLN. Therefore, the values for this variable were 
transformed by taking the absolute distance between log(plate-
lets) (in unit xLLN), and the turning point log(3.16)≈0.5. No 
strong non-linear effect was observed in other biochemical 
variables. The detailed coding of all predictors can be found 
in online  supplementary table 2; an example is given in the 
online supplementary appendix.

Multivariable analysis and model selection
The model with the highest C-statistic included a total of 13 
variables. A model including 13 variables would not be easy to 
use in clinical practice. When allowing for a performance of 
10% below the optimal C-statistic, seven variables remained in 
the model: PSC subtype, age at PSC diagnosis, ALP, AST, bili-
rubin, platelets and albumin (see online supplementary figure 1).

Calculation of the PI
The final PI was calculated as 1.890 times the ‘raw’ PI and is 
structured as

PI=0.323*PSC subtype +0.018*Age at diagnosis – 2.485*Albu-
min+2.451*Platelets+0.347*AST+0.393*ALP+0.337*Total 
Bilirubin (Formula 1)

►► PSC subtype: large duct PSC=1; small duct PSC=0
►► AST, ALP and Total Bilirubin are expressed in xULN, trans-

formed to (10–log)
►► Albumin is expressed in xLLN, transformed to (10–log)
►► Platelets are expressed in xLLN, transformed to 

abs(10–log–0.5)
The distribution of the final PI is plotted in the upper half of 

online supplementary figure 2. In figure 2 ,the relation between 
the PI and 5-year, 10-year and 15-year survival probabilities is 
illustrated. To calculate the survival probability for an individual 
patient at any year after diagnosis, the baseline survival proba-
bilities are provided in online  supplementary table 3. An online 
calculator can be accessed for this calculation: http://www.​amc.​
nl/​psc Furthermore, a patient example of how the model can be 
used in clinical practice can be found in the online supplemen-
tary appendix.

Evaluation of model performance
Discriminative power
The discriminative power was used as one criterion in the vari-
able selection during the model development, using the deri-
vation cohort, and will therefore not be evaluated again in the 
same cohort.

To assess the discriminative power of the model in the valida-
tion cohort, the PI of each individual included in the validation 

cohort was calculated using Formula 1. The distribution of the 
final PI in the validation cohort is plotted in online supplemen-
tary figure 2. The discriminative power of the model in the vali-
dation cohort was 0.68 (95% CI 0.51 to 0.85).

Calibration accuracy
For the derivation cohort, the observed Kaplan-Meier survival 
curves of the four risk groups that we defined (see online supple-
mentary table 4) were all close to the mean predicted survival 
curves, indicating good calibration (see  online  supplementary 
figure 3A). In addition, these curves were well separated, which 
confirmed the discriminative power of the PI (see online supple-
mentary figure 3A).

To assess the calibration accuracy of the prognostic model in 
the validation cohort, we classified the patients into four risk 
groups based on the same thresholds as used in the derivation 
cohort. The thresholds and proportion of patients included in 
each risk group are shown in  online   supplementary table 4. 
The mean predicted survival curves were comparable with the 
observed Kaplan-Meier curves per risk group (see online supple-
mentary figure 3B). And the Kaplan-Meier survival curves of the 
risk groups were well separated, confirming the high discrimina-
tive power of the PI in the validation cohort.

Performance of the model over time
The C-statistics based on data at 1, 2 and 3 years of follow-up 
were very comparable in the validation cohort (see online supple-
mentary table 5).

Discussion
This study provides a novel prognostic model for transplant-free 
survival of patients with PSC, based on a unique, well-pheno-
typed, predominantly population-based PSC cohort. The model 
is based on seven objectively measured and readily available 
variables: PSC subtype, age at PSC diagnosis, ALP, AST, total 
bilirubin, albumin and platelets. Validation of the model in 

Figure 1  Kaplan-Meier curves for derivation and validation 
cohorts. Solid line: derivation cohort (the Netherlands); dashed line: 
validation cohort (the UK).

Figure 2  Prediction of 5-year, 10-year and 15-year survival probability 
versus final prognostic index. Solid line: 5 years; dashed line:10 years; 
dotted line: 15 years.
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an external PSC cohort showed its robustness and adequate 
performance.

Recently, results of a joint effort from the International PSC 
Study Group, studying clinical risk factors for disease course 
cohort comprising 7121 cases, were published.30 In addition 
to PSC subtype and age at PSC diagnosis, sex and IBD subtype 
were also associated with disease course. This is in line with 
the results of our study since we also found that both sex 
and IBD  subtype were predictive factors for the composite 
end  point LTx or PSC-related death. For practical reasons of 
computing a prognostic model, we applied a threshold allowing 
for <10% reduction in C-statistic, and so sex and IBD subtype 
were not chosen as one of the seven most prognostic parameters. 
(see  online  supplementary figure 1). In the present study, the 
parameters sex and IBD subtype played a less important prog-
nostic role as compared with the International PSC Study Group 
(IPSCSG) cohort, which might be explained by the fact that our 
derivation and validation cohorts were mostly population-based, 
while most of the other cohorts that comprised the International 
PSC Study Group cohort were tertiary referral cohorts. Another 
factor which may explain this difference is that the composite 
end point used in the International PSC Study Group cohort was 
a combination of LTx and all-cause mortality, instead of PSC-re-
lated mortality in our study. Of note, our definition included 
death from colorectal cancer, the risk of which is clearly elevated 
in patients with PSC/UC.

The usefulness and applicability of previously composed 
prognostic models has been hampered by the use of tertiary 
referral-only cohorts, and variation in definitions of the time of 
origin in the studies (date of PSC diagnosis vs date of referral), 
PSC diagnosis and clinical end points (see online supplementary 
table 1). By using a predominantly population-based cohort as 
the derivation cohort, the present study largely mitigated these 
limitations. In addition, established definitions for PSC diagnosis 
and clinical end points were used, creating a prognostic model 
that represents a heterogeneous population of patients with PSC 
and is broadly applicable.16

The optimal way to validate a prognostic model is to assess its 
performance in an independent, but similar patient cohort.24 We 
used a PSC patient cohort from the UK. A notable difference in 
frequency of LTx between the derivation and validation cohort 
was observed. This may in part have resulted from the non-pop-
ulation-based 44 patients included in the derivation cohort, who 
were retrieved from a referral transplant centre. This may have 
led to a relative over-representation of more severely diseased 
patients with PSC. Thus the model may overestimate the indi-
vidual’s risk of reaching the end point when applied to patients 
in other settings. However, including a case mix of both popu-
lation-based and referral cohort PSC patients in the derivation 
cohort, we believe, gives the optimal representation of most PSC 
patient series.

The biochemistry parameters that are included in the model 
will in general change throughout the disease course. Early 
biochemical markers include an elevated serum ALP—the hall-
mark of PSC—and serum AST and ALT levels that are often 
elevated up to 2–3 xULN at time of diagnosis.16 In contrast, 
serum total bilirubin is often normal at PSC diagnosis and will 
increase in case of advanced disease stage, a dominant stricture or 
suppurative cholangitis. Serum albumin will only decrease once 
hepatic synthetic function is affected in advanced disease. The 
same holds true for serum platelets, which will only deviate from 
normal in advanced disease stage. The liver biochemistry vari-
ables implemented in the model are measured at every routine 
patient check, thus are frequently updated, objective, and readily 

available. This greatly benefits the applicability of the present 
model in clinical practice.

In a recent study assessing the prognostic value of ALP, it was 
demonstrated that ALP levels 1 year after diagnosis (T1) had a 
better prognostic value compared with ALP values at diagnosis 
or percentage change between diagnosis and T1.31 Given this 
result, we also made an attempt to develop another model based 
on T1 data, following the same modelling strategy. Compared 
with the current model, this T1 model included two more vari-
ables and yielded a lower C-statistic.

To assess if the current model—based on data at time of 
diagnosis—was also applicable at later time points, additional 
C-statistics were calculated when using laboratory values at a 
follow-up of 1, 2 and 3 years. Similar C-statistics were found, 
indicating that the model has good performance also when it is 
used for prediction at the first years after diagnosis. This suggests 
that the effects of interventions after diagnosis is made, such as 
endoscopic treatment of dominant strictures, may not have a 
sizeable effect on the performance of the model.

The calibration accuracy in the validation cohort was accept-
able after recalibrating the baseline survival probability, repre-
sented by the difference in mean predicted transplant-free 
survival curves, when compared with the observed Kaplan-Meier 
curves per risk group. This indicates that recalibration should be 
considered when the model is applied to a different cohort. A 
prognostic model developed based on patients from one country 
may not always be valid for patients from other parts of the 
world.32 With this study, we have reported all the information 
that is necessary for further recalibration, or revision of the 
current model, to fit a specific external patient cohort.

Current epidemiological data on the natural history of PSC—
including our Epi PSC PBC cohort—are predominantly based on 
Western, mostly Caucasian populations, and cohorts including 
children are lacking. However, there seems to be a geograph-
ical variation in incidence and prevalence rates, with lower rates 
in populations from Southern European and Asian descent.33 
Unfortunately, true population-based studies are scarce, and 
none has been performed in Asia and Africa.33 Factors that 
are suggested to play a role in the variable global distribution 
of PSC are differences in frequency of IBD, and in Human 
Leukocyte Antigen (HLA) susceptibility between ethnic popula-
tions.34–37 To be able to confirm the applicability of the present 
prognostic model in all populations, a better understanding of 
possible differences in incidence, prevalence and natural history 
between various ethnic and racial populations, and age groups 
is warranted.

Because variceal bleeding was not recorded for most patients, 
we were not able to compare the performance of the present 
model with the Mayo risk score. Contrary to the Mayo risk 
score, which has a horizon of only 4 years, the present model 
includes a more than three times longer follow-up time and 
was based on patients retrieved from a predominantly popula-
tion-based cohort. Hence, we believe our model has a broader 
applicability compared with the Mayo risk score. Retrospective 
data collection always has the inherent drawback of incomplete 
data collection. Consequently, biochemical values measured at 
time of diagnosis were missing for a considerable amount of 
cases. Most missing data were caused by patients that were diag-
nosed a long time ago as a result of which their patient files were 
no longer accessible. Therefore, these missing data were consid-
ered to be missing at random since they were only related to the 
year of diagnosis which can be observed and was included in 
the imputation model. Multiple imputation with two-level linear 
model enabled us to impute these biochemical values using data 
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collected during follow-up from the same individual, thereby 
improving the validity of the results.38

In conclusion, with this novel Amsterdam-Oxford prognostic 
model for PSC consisting of seven clinical and biochemical vari-
ables, long-term transplant-free survival probabilities of patients 
with PSC can accurately be predicted. It may prove a useful tool 
for patient counselling, healthcare budget planning, as well as 
for risk stratification in clinical trials.
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