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Key messages

►► Although genetic and environmental factors 
contribute to development of non-alcoholic 
fatty liver disease (NAFLD), changes in the 
intestinal microbiota are also involved.

►► Although there are technical limitations in 
assessing intestinal permeability in humans 
and the number of patients in these studies is 
rather small, fewer than half of the patients 
with NAFLD have evidence for disruption of the 
intestinal barrier.

►► Microbe-derived metabolites, such as 
trimethylamine, some secondary bile acids, 
short-chain fatty acids and ethanol contribute 
to the pathogenesis of NAFLD.

►► Succinate, phenylacetic acid and 
3-(4-hydroxyphenyl) lactate, which can be 
produced by gut microbiota, might be used as 
markers for detection of NAFLD.

Abstract
The spectrum of non-alcoholic fatty liver disease 
(NAFLD) ranges from simple hepatic steatosis, 
commonly associated with obesity, to non-alcoholic 
steatohepatitis, which can progress to fibrosis, cirrhosis 
and hepatocellular carcinoma. NAFLD pathophysiology 
involves environmental, genetic and metabolic factors, 
as well as changes in the intestinal microbiota and 
their products. Dysfunction of the intestinal barrier can 
contribute to NAFLD development and progression. 
Although there are technical limitations in assessing 
intestinal permeability in humans and the number of 
patients in these studies is rather small, fewer than half 
of the patients have increased intestinal permeability 
and translocation of bacterial products. Microbe-
derived metabolites and the signalling pathways they 
affect might play more important roles in development 
of NAFLD. We review the microbial metabolites that 
contribute to the development of NAFLD, such as 
trimethylamine, bile acids, short-chain fatty acids 
and ethanol. We discuss the mechanisms by which 
metabolites produced by microbes might affect disease 
progression and/or serve as therapeutic targets or 
biomarkers for NAFLD.

Introduction
Non-alcoholic fatty liver disease (NAFLD) is a spec-
trum of liver damage ranging from simple steatosis 
(or non-alcoholic fatty liver, NAFL) to non-alco-
holic steatohepatitis (NASH) with the development 
of fibrosis and cirrhosis.1 Hepatocellular carcinoma 
(HCC) can develop in the absence of cirrhosis,2 
and patients with NAFLD have an increased risk 
of HCC3 4. NASH is the second-leading indication 
for liver transplantation, but will likely become the 
leading cause in 2020.5

The pathogenesis of NAFLD involves envi-
ronmental, genetic and metabolic factors, such as 
limited physical activity and a dysbalanced diet.6 7 
Changes of intestinal microbiota are also associated 
with development of NAFLD.8 Multiple studies 
found that germ-free C57BL/6 mice gained less 
weight than conventional mice when given a sugar-
rich and lipid-rich diet despite similar amounts 
of food consumption.9 10 This indicated that the 
absence of microbes protects mice from obesity and 
NAFLD induced by a Western-style diet. Interest-
ingly, total body fat and liver triglyceride content 
increased following microbial colonisation of germ-
free mice.9 Mice lacking the nod-like receptor 
pyrin domain-containing protein 3 (NLRP3) and 

NLRP6 inflammasomes have increased suscepti-
bility to NASH, due to changes in the gut micro-
biota. Co-housing inflammasome-deficient mice 
with wild-type mice increased the susceptibility of 
wild-type mice to NASH, so fatty liver risk might 
be affected by the surrounding faecal microbiota.11 
Moreover, epididymal fat weight, hepatic steatosis, 
multifocal necrosis and infiltration of liver by 
inflammatory cells were significantly increased in 
germ-free mice colonised with faeces from patients 
with NASH and then fed a high-fat diet (HFD).12 
These results indicate that risk of NAFL and 
NASH can be transmitted, apparently by the faecal 
microbiota.

Gut microbiome
The intestinal microbiome has a strong mutualistic 
relationship with its host. Although the relative 
abundance and the composition of bacterial species 
is similar among healthy individuals, each person’s 
microbial profile is distinct. For instance, Bacteroi-
detes are higher in some Asian countries (30.2% 
and 36.6% in Korean and Japanese subjects, 
respectively) than in the USA (18.2%).13 Intestinal 
microbiota also shows high diversity along the gut. 
There are approximately 1011 microbial cells in the 
large intestine compared with 108 cells in the small 
intestine,14 with different microbial composition 
between faeces and rectal mucosa.15 16 Maternal 
microbiota shape the first microbial colonisation 
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of newborns, then microbial diversity increases and converges 
toward an adult-like microbiota.17 After childhood, the compo-
sition of microbiota becomes a relative stable system throughout 
adulthood, although the diversity of microbiota can be altered 
by diet, exercise, medications (antibiotics), gastrointestinal infec-
tions and surgery, as well as geographical provenance.18–20 For 
example, HFD in mice altered the diversity of gut bacteria and 
caused a decrease and increase in some species of Ruminococca-
ceae and Rikenellaceae, respectively.21 Exercise training affects 
gut microbiota in a body mass index (BMI)-dependent manner, 
with Collinsella spp increased in the higher BMI group, Faeca-
libacterium spp decreased in higher BMI group but increased 
in the lower BMI group and Lachnospira spp increased in the 
lower BMI group.20 Bacterial genes outnumber human genes 
by approximately 100-fold.22 The bacterial metagenome has 
therefore a tremendous capacity to synthesise and secrete 
a large amount of metabolites, which are important not only 
for interbacterial communications, but also for bacterial–host 
interactions.

Gut–liver axis
Gut microbiota interact with the host in multiple different ways, 
with numerous links between the gut and other organs, such as 
brain, kidney and liver.23–25 The term ‘gut-liver axis’ was first 
described by Volta et al in 1978, when these researchers reported 
production of immunoglobulin A antibodies to dietary antigens 
in patients with liver cirrhosis,26 indicating interactions between 
gut and liver. The liver is unique in that it has a special blood 
supply—two sources of blood flowing into the liver, from the 
hepatic artery and portal vein. About 70%–75% of the liver 
blood supply comes from the portal vein, which drains blood 
from mesenteric veins of the intestinal tract.27 Nutrients such 
as monosaccharides and amino acids are absorbed by special-
ised transporters on enterocytes and can reach the liver through 
the portal vein, where many are taken up by hepatocytes and 
metabolised. If the gut barrier is disrupted, the liver is the first 
organ in the body that encounters the microbial products, 
toxins and microorganisms (such as bacteria and fungi) from 
the intestine. The liver therefore serves as a large collection base 
for compounds and substances originating from the intestine 
(figure 1).

Gut barrier dysfunction in patients with NAFLD
The gut barrier comprises a physical barrier, a biochemical 
barrier and an immune system barrier.28 The physical barrier 
is supported mainly by the mucus layer, microbes and a single 
layer of intestinal epithelial cells that are linked by tight junc-
tion proteins. Molecules with antimicrobial properties, such as 
bile acids and antimicrobial proteins (including α-defensins and 
β-defensins, C-type lectins, cathelicidin, lysozyme and intestinal 
alkaline phosphatase) support and mediate the biochemical 
barrier.29 Secretory immunoglobulin A and lymphoid follicles 
that contain a variety of immune cells, including B cells, T cells, 
dendritic cells and neutrophils, are the components of immune 
system barrier.28 Gut barrier dysfunction results in translocation 
of microbes, their secreted metabolites and other microbial prod-
ucts from the gut lumen into blood and lymphatics, allowing 
them to reach other tissues and organs including the liver.30 31

There are multiple ways to evaluate gut barrier function, 
such as assessing the flow of non-digestible markers from the 
intestinal lumen to extraintestinal space including sugars, radio-
isotopes (eg, chromium-51-labelled ethylenediamine tetra-
acetic acid) and polyethylene glycols.32 Translocated microbial 

pathogen-associated molecular pattern molecules (PAMPs) such 
as lipopolysaccharides (LPS) can be measured in the systemic 
circulation, as surrogate markers of intestinal permeability. 
Despite all those different methods, techniques to evaluate intes-
tinal permeability in humans still have several limitations and 
the ideal test has not been established yet.33 A combination of 
direct and indirect measures of increased intestinal permeability 
performed in the same patient might be the most accurate way to 
assess the integrity of the gut barrier and provide more conclu-
sive answers of barrier dysfunction.

Numerous studies have shown that patients with alcoholic liver 
disease or cirrhosis have increased intestinal permeability, which 
might be an important contributor to disease progression.34–36 
Patients with NAFL or NASH are believed to have gut barrier 
dysfunction, with increased translocation of microbial products 
to the liver. Although there have been many reports of increased 
intestinal permeability in mice with fatty liver following an 
HFD or steatohepatitis following a Western-like diet,11 37 these 
results were not confirmed in all studies.38 Intestinal permea-
bility has been most frequently evaluated by measuring translo-
cated microbial products in the systemic circulation of rodents. 
Although these measurements indicate gut barrier function, 
these experiments are technically challenging.

More importantly, serum endotoxin was increased in only 
42.1% (8/19) patients with NASH39 and a meta-analysis 
found that only 39.1% of patients with NAFLD (n=128) had 
increased intestinal permeability.40 Most of the studies included 
in the meta-analysis used ratios of lactulose:mannitol or lactu-
lose:rhamnose in urine to assess intestinal permeability. Although 
there are technical limitations in assessing intestinal permeability 
in humans and the number of patients in these studies is rather 
small, only a subset of patients with NAFLD have increased 
intestinal permeability.

Binding of microbial products to pathogen pattern recep-
tors promotes liver inflammation and injury. Toll-like receptor 
(TLR)-4 is the cell receptor for LPS and changes in its signalling 
contribute to development of fatty liver in rodents.41 However, 
a recent clinical trial showed that inhibition of TLR4 by JKB-121 
did not reduce hepatic fatty content or fibrosis in patients with 
NASH compared with patients with placebo.42 So, gut barrier 
dysfunction with subsequent translocation of microbial prod-
ucts might make only a small contribution to development or 
progression of fatty liver disease, or only in a subset of patients. 
In animal models, fatty liver development appears to require gut 
microbiota, but other microbiota-associated factors might be 
required for pathogenesis of NAFLD.

Metabolomic studies of NAFLD
Recent technological advances in untargeted metabolomic anal-
yses, with nuclear magnetic resonance, gas chromatography-mass 
spectrometry and liquid chromatography-mass spectrometry, 
led to identification of differentially regulated metabolites in 
patients with NAFLD. A careful comparison of published metab-
olomic data (faeces, serum, plasma, urine or liver) from healthy 
individuals versus those with NAFL or NASH is provided in 
the online supplementary tables 1–4.

The severity of fibrosis in NAFLD associates with changes of 
metabolites in serum.43–49 Inosine and hypoxanthine (associated 
with nucleoside metabolism) are enriched in serum samples from 
patients with mild or moderate NAFLD (stage 0–2 fibrosis), 
whereas succinate, malate, α-ketoglutarate, glutamine, serine, 
fumarate, α-ketobutyrate, glutamate and lactate (associated 
with amino acid and carbon metabolism) are enriched in serum 
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Figure 1  Nutrients and microbiota-related substances flow from intestine to liver via portal vein. Liver, acting as a collection base, is the first organ 
to receive substances that originate from intestine. Under normal conditions, nutrients absorbed by the enterocytes have access to the liver, whereas 
most of the toxins and microorganisms cannot pass through the gut barrier. When this barrier is disrupted, toxins and microorganisms (such as 
bacteria and fungi) with their secreted products can reach the liver via the portal blood.

samples from patients with advanced fibrosis (stages 3–4).44 A 
recent study also showed that severity of liver steatosis correlates 
with phenylacetic acid in humans.50 Levels of some metabo-
lites, such as 3-(4-hydroxyphenyl) lactate, N-formylmethionine, 
phenyllactate, mannitol, allantoine and N-(2-furoyl) glycine, are 
heritable and have a shared-gene effect with hepatic steatosis and 
fibrosis.49

None of these metabolites is exclusively synthesised by 
microbes—these metabolites can also be synthesised by the host 
and/or come from the diet.51 For example, amino acids can be 
obtained from food, but faecal levels correlate with Alistipes and 
correlate inversely with Enterococcus and Bacteroides in mice.52 
However, there are some metabolites that cannot be produced 
without bacterial fermentation, such as the choline metabolite 
trimethylamine (TMA), the secondary bile acids deoxycholic acid 
(DCA) and lithocholic acid (LCA), and short chain fatty acids 
(SCFAs).53–55 Preclinical studies demonstrate that faecal choline 
levels correlate with Bacteroides and inversely with Prevotella 

and Clostridium52, while the secondary bile acid DCA correlates 
with Bacteroides, Erysipelotrichaceae incertae sedis and Entero-
coccus, but inversely with Prevotella, Barnesiella and Alistipes in 
mice.52 In contrast, faecal SCFAs showed a completely opposite 
pattern; they correlate with Prevotella, Barnesiella and Alistipes, 
and inversely with Bacteroides, Erysipelotrichaceae incertae sedis 
and Enterococcus in mice.52

To identify metabolites that are only derived from gut micro-
biota, studies of germ-free mice or mice given antibiotics are 
used. Mice without bacteria, fungi or viruses lack metabo-
lites derived from gut microbiota. Therefore, comparisons of 
metabolite profiles of germ-free mice versus conventional mice 
should identify metabolites of microbial origin. Conventional 
mice whose diet are supplemented with choline have increased 
plasma levels of TMA N-oxide (TMAO), compared with mice 
on control chow diet. However, choline supplementation did 
not increase levels of TMA (and thereby TMAO) in germ-free 
mice.54 Similarly, caecal contents from germ-free mice do not 
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contain DCA and LCA, because Clostridium scindens is required 
for 7α-dehydroxylation of primary bile acids.53 SCFAs such 
as acetate, propionate and butyrate were detected in caecal 
contents of conventional but not germ-free mice.55 These metab-
olites can therefore be considered bona fide metabolites derived 
from microbes. It will be important to study their effects in the 
pathogenesis of NAFL and NASH.

Microbiota-derived metabolites in NAFLD
Choline and choline-related metabolites
Choline, considered an essential nutrient by the Institute of 
Medicine,56 can influence multiple physiological processes in 
the liver such as lipid and cholesterol metabolism, signalling 
through lipid second messengers and enterohepatic circulation of 
bile acids.57 Choline is mainly obtained from diet, although the 
liver can produce some choline. Preclinical studies demonstrate 
that decreased levels of choline can lead to fatty liver disease by 
reducing the efflux of very-low-density lipoproteins (VLDL) from 
hepatocytes.58 59 A choline-deficient diet has been used to induce 
steatohepatitis in rodents for decades.60

TMA is a product of choline metabolism by the intestinal micro-
biota.61 It reaches the liver via portal vein where it is oxidised 
by hepatic flavin-containing monooxygenases to form TMAO. 
TMAO is then released into the circulation.62 Conversion of 
choline into TMA by microbiota in 129S6 mice on an HFD led 
to a reduction in bioavailability of choline, mimicking the effect of 
choline-deficient diet.63 TMA was proposed to be hepatotoxic,63 
although direct evidence for promoting NAFLD is currently 
lacking. TMAO might contribute to the development of NAFLD 
via different mechanisms. TMAO modulates glucose metabolism 
and increases insulin resistance in mice on an HFD.64 In addi-
tion, TMAO promotes inflammation in adipose tissue, which can 
promote insulin resistance by increasing the serum level of inflam-
matory cytokine C-C motif chemokine ligand 2.64 TMAO also 
affects lipid absorption and cholesterol homeostasis by reducing 
conversion of cholesterol into bile acids.65 Levels of the bile acid 
synthesis enzymes cytochrome P450 family 7 subfamily A member 
1 (CYP7A1) and CYP27A1 were reduced in livers of mice fed a 
TMAO-containing diet.65

Clinical evidence suggests that subjects placed on choline-defi-
cient diet developed fatty liver in MRI studies, but only if they 
carried a single-nucleotide polymorphism in the promoter region 
of PEMT (rs12325817). This polymorphism affects de novo 
synthesis of phosphatidylcholine66. Serum levels of TMAO are 
significantly higher in patients with NAFLD than in healthy people 
and correlate with the severity of steatosis (mean level in patients 
with moderate or severe NAFLD, 0.434+0.073 µM; mean level 
in patients with mild NAFLD, 0.160+0.038 µM; mean level in 
healthy people, 0.104+0.040 µM).43

Apart from NAFLD, other metabolic diseases are also affected 
by TMAO. TMAO promotes atherosclerosis, increases risk of 
cardiovascular diseases and is associated with type 2 diabetes 
mellitus.62 67 Atherosclerosis, cardiovascular diseases and type 
2 diabetes mellitus are closely correlated with NAFLD progres-
sion, so it is possible that TMAO indirectly affects NAFLD, by 
increasing the risk of atherosclerosis, cardiovascular disease and/or 
type 2 diabetes mellitus in patients. Or these disorders might share 
pathways of pathogenesis.

In summary, preclinical and clinical evidence indicates that intes-
tinal choline metabolism into TMA and TMAO can contribute to 
development of fatty liver disease (figure 2). Strategies to reduce 
TMA and/or TMAO might be developed for treatment or preven-
tion of NAFLD. For example, 3,3-dimethyl-1-butanol, a structural 

analogue of choline that inhibits TMA production from microbes 
by inhibiting microbial TMA lyases and thereby reducing levels 
of TMAO, reduced atherosclerosis in mice fed a high-choline or 
L-carnitine diet68. Each person’s microbial profile is distinct, so 3, 
3-dimethyl-1-butanol is likely to have effects on fatty liver in only 
a subset of patients—effects are likely to depend on genetic, envi-
ronmental and lifestyle determinants of choline metabolism by the 
intestinal microbiota. Thus, additional characterisation of NAFLD 
patient cohorts is required to determine whether all or only a subset 
of patients with NAFLD have increased systemic TMAO level.

Bile acids
Bile acids and their metabolites help maintain hepatic glucose, 
cholesterol and triglyceride homeostasis. Preclinical studies suggest 
that bile acids can contribute to development of NAFL and NASH 
by altering nuclear bile acid receptor farnesoid X receptor (FXR) 
signalling.69 70  The primary bile acid chenodeoxycholic acid 
(CDCA) activates FXR signalling, whereas the secondary bile acid 
DCA inhibits this activation and counteracts the effects of CDCA.71

FXR regulates glucose and lipid metabolism via different mech-
anisms, such as increasing insulin sensitivity, repressing hepatic 
gluconeogenic genes and increasing hepatic glycogen synthesis.72 73 
FXR can also induce the expression and secretion of hepatic fibro-
blast growth factor 21 (FGF21), a regulator of metabolism that 
stimulates the uptake of glucose in adipose tissue74. Additionally, 
FXR activation inhibits lipogenesis and promotes fatty acid oxida-
tion and also affects cholesterol transportation.75 76 Moreover, 
FXR can induce expression of FGF15 in the ileum of mice (FGF19 
in humans)—this protein binds to FGF receptor 4 (FGFR4) and 
klotho beta (KLB) on hepatocytes, which inhibits expression of 
CYP7A1 and bile acid synthesis.77

Bile acids can also bind to G-protein-coupled receptor 
TGR5.69  TGR5 is expressed in non-parenchymal liver cells, 
enteroendocrine L cells, brown adipose tissue, white adipose 
tissue, skeletal muscle, gallbladder and some areas of the central 
nervous system.78 Bile acids can inhibit LPS-induced production 
of cytokines such as interleukin 1 alpha (IL1A), IL1B, IL6 and 
tumour necrosis factor (TNF) by Kupffer cells via TGR5-cAMP 
dependent pathways,79 so TGR5 regulates inflammation in liver. 
TGR5 also regulates glucose homeostasis, by inducing expression 
of glucagon-like peptide-1 (GLP-1) and inhibiting activation of 
the NLRP3 inflammasome. Activation of TGR5 results in more 
energy consumption and less body weight gain.80 81 Administration 
of TGR5 or FXR agonists to mice reduced NAFLD by inhibiting 
lipogenesis, improving hypercholesterolaemia, inducing energy 
expenditure and decreasing hepatic inflammation.82 83

Clinical studies indicate that dysregulation of bile acid homeo-
stasis and its related signalling pathways is associated with the 
occurrence of NAFLD. Concentrations of bile acids such as CDCA, 
DCA and ursodeoxycholic acid are increased in serum and urine 
samples of patients with NASH compared with healthy subjects.84 
Levels of cholic acid are increased in liver tissues from patients 
with NASH.85 Interestingly, another research group found that 
liver levels of cholic acid and DCA were significantly decreased in 
patients with NASH.86 In addition, plasma level of glycocholate, 
taurocholate, glycochenodeoxycholate, taurochenodeoxycholate 
and ursodeoxycholic acid were increased in patients with NASH 
compared with patients with NAFL.87 Levels of taurolithocholic 
acid, glycocholate and taurocholate correlated with severity of 
portal inflammation, lobular inflammation, steatosis and hepato-
cyte ballooning, respectively.87 The ratio of DCA to CDCA was 
significantly increased in patients with NASH,70 84 85 and levels 
of FXR were lower in liver tissues from paediatric patients with 
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Figure 2  Choline and its metabolites (TMA and TMAO). Choline is converted to TMA by intestinal microbiota and results in choline deficiency 
(downward arrow), which reduces efflux of VLDL (downward arrow) from hepatocytes and promotes inflammation. Higher levels of TMA lead to 
increased production of TMAO and promote development of NAFLD by increasing insulin resistance and reducing glucose tolerance. NAFLD, non-
alcoholic fatty liver disease; TMA, trimethylamine;TMAO, trimethylamine N-oxide; VLDL, very-low-density lipoprotein. 

NAFLD compared with healthy children.88 Serum or plasma levels 
of FGF19 are reduced in patients with NAFLD, reducing hepatic 
FGFR4 signalling to promote NAFLD.88 Decreased FGF19 is 
indicative of an intestinal bile acid profile that has a lower affinity 
for FXR in intestinal epithelial cells.

Agents that activate FXR or TGR5 signalling are being devel-
oped for treatment of NAFLD. 6-ethylchenodeoxycholic acid 
(obeticholic acid), a potent activator of FXR, reduced histolog-
ical features of NASH in liver samples from patients, compared 
with placebo.89 Furthermore, an engineered analogue of FGF19 
named NGM282 rapidly reduced absolute liver fat content in 
patients with NASH.90 Taken together, changes in bile acid metab-
olism affect development of NAFL and NASH via FXR and TGR5 
signalling (figure  3). Positive outcomes in clinical trials demon-
strate how microbiota-mediated changes in bile acids can be used 
as therapeutic target.

Short-chain fatty acids
SCFAs include formate, acetate, propionate and butyrate; they are 
generated by gut microbe fermentation of non-digestible carbo-
hydrates such as non-starch polysaccharides, resistant starch and 

miscellaneous low-digestible saccharides.55 SCFAs provide not 
only important sources of nutrients and energy from the intestinal 
epithelium, but also precursors for lipogenesis and gluconeogen-
esis (a metabolic pathway that results in the generation of glucose 
from non-carbohydrate carbon substrates such as lactate, glycerol 
and glucogenic amino acids). Gluconeogenesis is involved in the 
development of fatty liver disease, after absorption and delivery of 
nutrients to the liver via the portal vein.

Preclinical studies indicate that SCFAs activate the G-pro-
tein-coupled receptors (GPCRs) GPR41 and GPR43, which are 
expressed on adipocytes and gut enteroendocrine L cells. Conven-
tionally raised Gpr41–/– mice had lower body weight than their 
wild-type littermates.91 Consistent with these results, Gpr43–/– 
mice did not become obese, have increases in serum triglycerides 
or develop insulin resistance when placed on an HFD.92 Activation 
of these GPCRs therefore appears to contribute to obesity and 
metabolic disease, and might participate in the pathogenesis of 
fatty liver disease via multiple mechanisms.

Activation of GPR41 and GPR43 stimulates secretion of 
peptide-YY, inhibits gut motility and slows intestinal transit, 
thereby enhancing nutrient absorption, increasing energy 
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Figure 3  Effects of bile acids. Dysbiosis of the intestinal microbiota changes the composition of bile acids. A higher ratio of DCA:CDCA reduces 
activation of FXR, leading to lower expression of FGF15/FGF19. A lower level of FXR in the liver impairs glucose metabolism and dysregulates lipid 
homeostasis. Reduced levels of FGF15/FGF19 cause increased expression of CYP7A1, increasing bile acids synthesis and promote the development 
of NAFLD. CDCA, chenodeoxycholic acid; CYP7A1, cytochrome P450 family 7 subfamily A member 1; DCA, deoxycholic acid; FGF, fibroblast growth 
factor; FXR, farnesoid X receptor; NAFLD, non-alcoholic fatty liver disease. 

harvest from the diet and promoting hepatic lipogenesis.91 93 
Additionally, activation of GPR41 and GPR43 promotes secre-
tion of GLP-1, which not only inhibits gastric emptying and food 
intake, but also activates genes in hepatocytes that regulate fatty 
acid β-oxidation and insulin sensitivity.94 95 Finally, activation of 
GPR43 in adipocytes inhibits lipolysis and decreases plasma fatty 
acids.96

Apart from their activation of GPR41 and GPR43, SCFAs enter 
the liver through the portal vein, where they contribute to lipid 
and glucose metabolism.97 Increased acetate in the liver can cause 
triglyceride accumulation because acetate is an important substrate 
for fatty acid synthesis.98 Increased levels of propionate promote 
gluconeogenesis in the liver, since propionate is a precursor for 
gluconeogenesis.97 99 Triglyceride accumulation and gluconeogen-
esis have each been associated with development of NAFLD.

Although SCFAs directly or via binding to GPRs appear to 
promote NAFLD, other effects of SCFAs might be beneficial for 
NAFLD. For example, butyrate might modulate development 
of NAFL and NASH by activating AMP-activated protein kinase 
(AMPK). AMPK inhibits oxidative stress and inflammation,100 

regulates energy homeostasis by affecting glucose and lipid metab-
olism,101 controls fatty acid oxidation by regulating mitochon-
drial biogenesis and suppresses expression of lipogenic genes by 
reducing the activity of the sterol regulatory element-binding 
transcription factor 1 c (SREBP-1c).102 Butyrate activates AMPK in 
liver, which reduces HFD-induced obesity and insulin resistance in 
mice.103 Consistently, in vitro experiments showed that butyrate 
increased AMPK activity and accelerated the assembly of tight 
junction proteins in the colonic epithelial cell line Caco-2.104

Furthermore, SCFAs appear to inhibit development of NAFL 
and NASH at the epigenetic level. Histone deacetylases (HDACs) 
prevent gene transcription by removing histone-bound acetyl 
groups. Inhibitors of class I and II HDACs (such as SCFAs) block 
this epigenetic regulation to allow transcriptional activation—
their activity has been associated with development of different 
diseases. Butyrate inhibits HDAC activity, increasing acetylation of 
histone and non-histone proteins at genes and their transcription. 
Butyrate also inhibits LPS-induced activation of the SRC proto-on-
cogene, which encodes an enzyme that phosphorylates focal 
adhesion kinase; butyrate thereby reduces macrophage motility 
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Figure 4  Effects of SCFAs. SCFAs are generated by gut microbiota digestion of dietary fibres. They enter the liver through the portal vein. In the liver, 
acetate and propionate promote accumulation of TGs and gluconeogenesis, respectively. SCFAs also activate GPR41 and GPR43 on enteroendocrine 
L cells, leading to secretion of PYY and increased nutrient uptake, more energy intake and increased hepatic lipogenesis. On the other hand, butyrate 
can activate AMPK and induce epigenetic changes, which in turn can reduce hepatic steatosis. AMPK, AMP-activated protein kinase; GPR41, G‑protein 
receptor 41; PYY, peptide-YY;SCFA, short-chain fatty acid; TG, triglyceride. 

and inflammation.105 HDAC inhibitors also activate transcrip-
tion of the forkhead box P3 gene to increase numbers of regula-
tory T cells, which suppresses the immune response and reduces 
inflammation.106

SCFAs therefore appear to promote and also prevent develop-
ment of NAFL and NASH depending on the signalling pathway 
or mechanism they activate, which include GPR41 and GPR43, 
AMPK, HDAC inhibition and/or directly promoting liver 
triglyceride accumulation and gluconeogenesis (figure 4). Supple-
mentation studies allow to directly assess the net effect of SCFAs. 
Treatment of wild-type mice with tributyrin, a butyrate prodrug, 
protects against diet-induced obesity, hepatic steatosis and insulin 
resistance.107 Supplementation of acetate or propionate protects 
against diet-induced weight gain, insulin resistance and hepatic 
steatosis in mice by reducing hepatic fatty acid uptake and 
suppressing lipogenesis in the liver.108 Based on these preclinical 

data SCFA supplementation appears to exert overall beneficial 
metabolic and antisteatotic hepatic effects.

Clinical studies demonstrate that formate and acetate are 
enriched in faecal samples from adults with advanced fibrosis, 
whereas butyrate and propionate are enriched in faecal samples 
from adults with mild or moderate NAFLD.44 It therefore 
appears that levels and subtypes of SCFAs correlate with the 
severity of fatty liver disease. However, another study reported 
that some SCFAs, especially formate, acetate and valerate, were 
less abundant in faecal samples from children with NAFLD.109 
These apparent differences might be due to differences in patient 
age, but could also be related to differences in diet, environ-
mental factors and technical issues. SCFAs are volatile substances 
and immediate processing is required for accurate measurement.

In summary, whether altered production of SFCAs by the 
intestinal microbiota contributes to liver disease in patients with 
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Figure 5  Effects of ethanol. Endogenous ethanol increases intestinal permeability by activating production of inflammatory cytokines and 
acetaldehyde. This leads to translocation of PAMPs into the liver, further increasing production of inflammatory cytokine and lipogenesis. Acetaldehyde 
produced from endogenous ethanol is cytotoxic to hepatocytes, and acetate increases accumulation of TGs. Endogenous ethanol increases the activity 
of CYP2E1, which catalyses oxidation of endogenous ethanol to produce free radicals, which causes liver inflammation. CYP2E1, cytochrome P450 
family 2 subfamily E member 1; PAMP, pathogen-associated molecular pattern molecule; TG, triglyceride. 

NAFL or NASH, deserves further investigations. Larger studies 
are required to demonstrate whether systemic and faecal levels 
of SCFAs are consistently altered in patients with NAFLD.

Ethanol
Clinical studies demonstrate that low levels of endogenous 
ethanol are detected in blood samples from subjects after intake 
of alcohol-free food110—endogenous ethanol might be generated 
by the intestinal microbiota. Non-alcoholic paediatric patients 
with NASH had higher serum levels of ethanol than obese and 
healthy children without NASH.111 112 Endogenous ethanol 
might therefore contribute to the pathogenesis of NAFL and 
NASH. Alcoholic steatohepatitis and NASH have similar histo-
logical features.113 It is conceivable that production of ethanol 
by the gut microbiota increases the severity of liver disease in 
patients with NAFL or NASH.

Preclinical studies have established that ethanol consumption 
increases intestinal permeability by well-characterised mecha-
nisms, such as increasing intestinal expression of inflammatory 
cytokines. The ethanol metabolite acetaldehyde also appears to 

affect the function of tight junction proteins.114 Further studies 
are needed to explore whether a subgroup of patients with 
NAFLD with increased intestinal permeability have increased 
ethanol production by the microbiota.

Microbe PAMPs, which translocate to the liver through 
disrupted tight junctions, increase hepatic expression of TNF and 
levels of lipogenesis-related factors such as acetyl-CoA carboxy-
lase, fatty acid synthase and SREBP-1c.115 Endogenous ethanol 
inhibits the tricarboxylic acid cycle, thus increases levels of 
acetate, thereby promoting triglyceride accumulation in hepato-
cytes.98 Ethanol can also increase the activity of CYP2E1116 to 
catalyse ethanol oxidation and produce free radicals that might 
promote liver inflammation.117 Moreover, acetaldehyde has 
oxidant-dependent metabolic and cytotoxic effects, which can 
further enhance liver injury.118

In summary, endogenous ethanol might contribute to the 
pathogenesis of NAFLD by increasing intestinal permeability, 
levels of acetate and formation of acetaldehyde, which promotes 
liver injury (figure 5).
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Changes of other metabolites in NAFLD
Levels of other metabolites differ between individuals with 
versus without NAFLD. For instance, levels of some alcohols 
and ketones are higher in faecal samples from patients with 
NAFLD, as well as some esters and lactates (L-lactate and D-lac-
tate).44 109 119 120 Blood (plasma and/or serum) samples from 
patients with NAFLD had higher levels of glucose, some lipids 
(monounsaturated fatty acids) and branched-chain amino acids 
(leucine, valine and isoleucine),50 121 122 while urine samples 
also had higher levels of glucose and branched-chain amino 
acids.47 50 123 Liver levels of butyryl carnitine (C4) and lauryl 
carnitine (C12) are increased in patients with NAFLD, whereas 
the level of linoleic acid is decreased.86

Although these metabolite changes seem diverse, it appears 
that succinate,44 124 glucose,47 49 86 122 123 branched-chain amino 
acids50 and some non-essential amino acids (tyrosine and 
cysteine)46 47 86 123 were increased in multiple types of samples 
from patients with NAFLD. This might be due to lifestyle 
features of these patients, such as a sugar-rich diet. However, 
these consistent findings may provide an opportunity to develop 
a diagnostic biomarker for NAFLD. Succinate, which was 
increased in faecal, serum and liver samples from patients with 
NAFLD, is an extracellular signalling molecule as well as an 
intermediate in the citric acid cycle. It might promote progres-
sion of NAFLD by causing production of α-smooth muscle 
actin, a biomarker of fibrogenic response, by activating GPR91 
in hepatic stellate cells.125 Succinate is an important metabolite 
that is produced by mammalian cells and by intestinal microbes 
such as Bacteroidaceae and Prevotella126 127—these microbes are 
increased in faecal samples of patients with NASH.45 111

A recent study showed that plasma phenylacetic acid correlates 
with hepatic steatosis and NAFLD activity score in humans.50 It 
is a product from metapleural gland secretions in ant species and 
an oxidation product of phenethylamine in humans.128 129 Gut 
bacteria can also produce phenylacetic acid.50 130 Phenylacetic 
acid promotes development of NAFLD via inducing triglyceride 
accumulation in human primary hepatocytes and promoting 
the expression of lipid metabolism genes (LPL and FASN).50 
It reduces AKT phosphorylation, therefore leading to insulin 
resistance.50

Levels of 3-(4-hydroxyphenyl) lactate are also increased 
in serum samples from patients with NAFLD compared with 
controls. It is synthesised by bacterial enzymes such as D-hy-
drogenase and cinnamoyl-CoA:phenyllactate CoA transferase, 
and many intestinal microbes are capable of producing it.49 
3-(4-hydroxyphenyl) lactate has a shared-gene effect with 
hepatic steatosis and fibrosis.49 So, risks of NAFLD might involve 
genetic factors, features of the intestinal microbiota and derived 
metabolites such as 3-(4-hydroxyphenyl) lactate.

Succinate, phenylacetic acid and 3-(4-hydroxyphenyl) lactate 
are intestinal microbe metabolites that promote NAFLD develop-
ment and might be developed as diagnostic markers. Researchers 
might also develop strategies to reduce microbe production of 
succinate, phenylacetic acid and 3-(4-hydroxyphenyl) lactate, 
thereby reducing development or progression of NAFLD. These 
are important molecules for further study.

Conclusion
Many preclinical studies have shown that altering gut microbiota 
can promote development of fatty liver. Although it is commonly 
thought that translocated microbial products contribute to 
NAFLD, fewer than half of the patients with NAFLD have 
evidence for increased intestinal permeability. However, this is 

based on a relatively small number of patients and technically 
challenging techniques. Future studies with higher number 
of patients with NAFLD are required to evaluate gut barrier 
dysfunction. It might be more accurate to perform several assays 
in the same patients, for example, faecal albumin, systemic LPS 
and a sugar absorption test.

On the other hand, other microbial factors, such as micro-
biota-related metabolites, seem important for NAFLD disease 
progression. Metabolomic studies are challenging, the identity 
of many detected metabolites is unknown and the microbial 
origin is reported for a few metabolites only. There are incon-
sistent or even conflicting results in metabolomic profiles in 
patients with NAFLD, which might be a result from the rela-
tive small number of patients, lack of uniform methodology and 
standardised protocols. However, such differences, if repro-
ducible, might offer opportunities for categorising NAFLD 
into several subtypes. As not all patients with NAFLD have a 
disrupted gut barrier, different NAFLD subtypes might have 
different metabolites as driver for disease progression. Care-
fully designed metabolomic studies, larger scale clinical studies, 
and different ethnic background with uniform methodology to 
monitor metabolites in different samples (stool, serum/plasma, 
urine and liver tissue) over time will provide insights into mech-
anisms of fatty liver and steatohepatitis development, and lead 
to new diagnostic and therapeutic approaches. Such approaches 
might confirm metabolic NAFLD subtypes and open the oppor-
tunity for personalised treatment approaches. Moving towards 
metabolic NAFLD subtypes requires clinical studies to not only 
report the mean or average of a certain metabolite, but also 
report the percentage of patients with normal and elevated/
lower levels.

Agents are being developed to target some of these metabolites 
(activate, block or alter production of) for treatment of patients. 
For example, microbial choline conversion into TMA can be 
blocked using an inhibitor of the bacterial enzyme 3,3-dimeth-
yl-1-butanol. Such a precision-microbiome therapy might be 
suitable for a choline-deficient metabolic NAFLD subtype (if 
existent) and might be used as personalised medicine approach. 
Multiple preclinical studies are trying to develop agents 
that target some of these metabolites (activate, block or alter 
production of) to treat NAFLD. Well-designed clinical studies 
are required to effectively testing the effects of metabolites in 
humans.

Taken together, identification of microbial metabolites causing 
or driving NAFLD, the field is currently in its infancy. With 
additional technological advances and better designed clinical 
studies, we will be able to categorise patients with NAFLD into 
different metabolic subtypes and design personalised or subtype 
specific therapies.
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