# **Table of Contents**

| Supplementary Table 1. List of British National Formulary Codes for Proton Pump Inhibitors                                                                                                             |      |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| Supplementary Table 2. List of British National Formulary Codes for Histamine-2 Receptor Antagonists                                                                                                   |      |
| Supplementary Table 3. Colorectal Cancer Read Codes Used to Define Events                                                                                                                              |      |
| Supplementary Table 4. Defined Daily Dose of Proton Pump Inhibitors                                                                                                                                    |      |
| Supplementary Table 5. Crude and Adjusted HRs for the Association Between the Use of Specific Types of                                                                                                 | f    |
| Proton Pump Inhibitors and Colorectal Cancer Compared to the Use of Histamine-2 Receptor Antagonists .                                                                                                 | 6    |
| Supplementary Table 6. Crude and Adjusted HRs for the Association Between the Use of Proton Pump                                                                                                       |      |
| Inhibitors and Colorectal Cancer Compared to the Use of Histamine-2 Receptor Antagonists (Stratified by                                                                                                |      |
| Colorectal Cancer Type)                                                                                                                                                                                | 7    |
| Supplementary Table 7. Adjusted HRs for the Association Between the Use of Proton Pump Inhibitors and                                                                                                  |      |
| Colorectal Cancer Compared to the Use of Histamine-2 Receptor Antagonists (Interaction with Sex)                                                                                                       | 8    |
| Supplementary Table 8. Adjusted HRs for the Association Between the Use of Proton Pump Inhibitors and                                                                                                  |      |
| Colorectal Cancer Compared to the Use of Histamine-2 Receptor Antagonists (Interaction with Age)                                                                                                       | 9    |
| Supplementary Table 9. Adjusted HRs for the Association Between the Use of Proton Pump Inhibitors and                                                                                                  |      |
| Colorectal Cancer Compared to the Use of Histamine-2 Receptor Antagonists (Interaction with                                                                                                            |      |
| Gastrointestinal Polyps)                                                                                                                                                                               | 10   |
| Supplementary Table 10. Adjusted HRs for the Association Between the Use of Proton Pump Inhibitors and                                                                                                 |      |
| Colorectal Cancer Compared to the Use of Histamine-2 Receptor Antagonists (Interaction with Inflammato                                                                                                 |      |
| Bowel Disease)                                                                                                                                                                                         |      |
| Supplementary Table 11. Adjusted HRs for the Association Between the Use of Proton Pump Inhibitors and                                                                                                 |      |
| Colorectal Cancer Compared to the Use of Histamine-2 Receptor Antagonists (Interaction with Aspirin Use                                                                                                |      |
| contectal cancel compared to the Use of Histamine-2 Receptor Antagonists (Interaction with Aspirin Use                                                                                                 |      |
| Supplementary Table 12. Adjusted HRs for the Association Between the Use of Proton Pump Inhibitors and                                                                                                 |      |
| Colorectal Cancer Compared to the Use of Histamine-2 Receptor Antagonists Stratified by Approved                                                                                                       |      |
| Indication at Baseline                                                                                                                                                                                 | 13   |
| Supplementary Table 13. Crude and Adjusted HRs for the Association Between the Use of Proton Pump                                                                                                      | . 15 |
| Inhibitors and Colorectal Cancer Compared to the Use of Histamine-2 Receptor Antagonists (Different Lag                                                                                                | r    |
| Periods)                                                                                                                                                                                               |      |
| Supplementary Table 14. Crude and Adjusted HRs for the Association Between the Use of Proton Pump                                                                                                      | . 17 |
| Inhibitors and Colorectal Cancer Compared to the Use of Histamine-2 Receptor Antagonists (Intention to                                                                                                 |      |
| Treat Exposure Definition) *                                                                                                                                                                           | 15   |
| Supplementary Table 15. Crude and Adjusted HRs for the Association Between the Use of Proton Pump                                                                                                      | . 15 |
| Inhibitors and Colorectal Cancer Compared to the Use of Histamine-2 Receptor Antagonists (IPCW)                                                                                                        | 16   |
| Supplementary Table 16. Crude and Adjusted HRs for the Association Between the Use of Proton Pump                                                                                                      | . 10 |
| Inhibitors and Colorectal Cancer Compared to the Use of Histamine-2 Receptor Antagonists (Truncate                                                                                                     |      |
| Follow-up for Possible NDMA Contaminant) *                                                                                                                                                             | 17   |
| Supplementary Table 17. Crude and Adjusted HRs for the Association Between the Use of Proton Pump                                                                                                      | . 17 |
| Inhibitors and Colorectal Cancer Compared to the Use of Histamine-2 Receptor Antagonists (High-                                                                                                        |      |
| dimensional Propensity Score) *                                                                                                                                                                        | 18   |
| Supplementary Table 18. Crude and Adjusted HRs for the Association Between the Use of Proton Pump                                                                                                      | . 10 |
| Inhibitors and Colorectal Cancer Compared to the Use of Histamine-2 Receptor Antagonists (Inverse                                                                                                      |      |
| Probability of Screening Weights) *                                                                                                                                                                    | 10   |
| Supplementary Table 19. Summary of observational studies assessing the association between PPIs and                                                                                                    | . 19 |
|                                                                                                                                                                                                        | 20   |
| colorectal cancer<br>Supplementary Method 1. Inverse Probability of Censoring Weights                                                                                                                  |      |
|                                                                                                                                                                                                        |      |
| Supplementary Method 2. High-dimensional Propensity-scores                                                                                                                                             |      |
| Supplementary Method 3. Inverse Probability of Screening Weights                                                                                                                                       |      |
| Supplementary Figure 1. Exposure Definition                                                                                                                                                            |      |
| Supplementary Figure 2. Weighted Kaplan-Meier Curve of the Cumulative Incidence of Colorectal Cancer                                                                                                   |      |
| Supplementary Figure 3. Restricted Cubic Spline of Cumulative Duration of Proton Pump Inhibitor Use<br>Supplementary Figure 4. Restricted Cubic Spline of Cumulative Dose of Proton Pump Inhibitor Use |      |
|                                                                                                                                                                                                        |      |
| References                                                                                                                                                                                             | . 28 |

| Supplementary Table 1. List of British National Formulary Codes for Proton Pump |
|---------------------------------------------------------------------------------|
| Inhibitors                                                                      |

| British National Formulary Code | British National Formulary Header          |
|---------------------------------|--------------------------------------------|
| 01030500/05010103               | Proton Pump Inhibitors/Broad-spectrum      |
|                                 | Penicillins                                |
| 01030500/10010100               | Proton Pump Inhibitors/Non-steroidal Anti- |
|                                 | inflammatory Drugs                         |
| 01030500/05010500               | Proton Pump Inhibitors/Macrolides          |
| 1030500                         | Proton Pump Inhibitors                     |

| Supplementary Table 2. List of British National Formulary Codes for Histamine-2 |
|---------------------------------------------------------------------------------|
| Receptor Antagonists                                                            |

| British National Formulary Code | <b>British National Formulary Header</b>            |
|---------------------------------|-----------------------------------------------------|
| 1030100                         | H2 receptor antagonists                             |
| 01030100/01010201               | H2 receptor antagonists/Alginate preparations       |
| 01030300/01030100               | Chelates and complexes/H2 receptor antagonists      |
| 01030300/01030100               | Chelates and complexes/H2 receptor antagonists      |
| 01030100/01010202               | H2 receptor antagonists/Indigestion remedies        |
| 01010201/01030100               | Compound Alginate Preparations/H2-                  |
|                                 | Receptor Antagonists                                |
| 01010202/01030100               | Indigestion Preparations/H2-Receptor<br>Antagonists |

Abbreviations: H2, Histamine-2

| ( | Ĵ | l | ı | i |
|---|---|---|---|---|
|   |   |   |   |   |

| Supplementary Table 3. Colorectal Cancer Read Codes Used to Define Events |                                                               |  |
|---------------------------------------------------------------------------|---------------------------------------------------------------|--|
| Read Code                                                                 | Read Term                                                     |  |
| B1300                                                                     | Malignant neoplasm of colon                                   |  |
| B141.00                                                                   | Malignant neoplasm of rectum                                  |  |
| B133.00                                                                   | Malignant neoplasm of sigmoid colon                           |  |
| B134.00                                                                   | Malignant neoplasm of caecum                                  |  |
| B141.12                                                                   | Rectal carcinoma                                              |  |
| B131.00                                                                   | Malignant neoplasm of transverse colon                        |  |
| B141.11                                                                   | Carcinoma of rectum                                           |  |
| B130.00                                                                   | Malignant neoplasm of hepatic flexure of colon                |  |
| B13z.11                                                                   | Colonic cancer                                                |  |
| B132.00                                                                   | Malignant neoplasm of descending colon                        |  |
| B136.00                                                                   | Malignant neoplasm of ascending colon                         |  |
| B902500                                                                   | Neoplasm of uncertain behaviour of rectum                     |  |
| B137.00                                                                   | Malignant neoplasm of splenic flexure of colon                |  |
| B902400                                                                   | Neoplasm of uncertain behaviour of colon                      |  |
| B134.11                                                                   | Carcinoma of caecum                                           |  |
| B140.00                                                                   | Malignant neoplasm of rectosigmoid junction                   |  |
| B13z.00                                                                   | Malignant neoplasm of colon NOS                               |  |
| B1400                                                                     | Malignant neoplasm of rectum, rectosigmoid junction and anus  |  |
| B13y.00                                                                   | Malignant neoplasm of other specified sites of colon          |  |
| B14z.00                                                                   | Malignant neoplasm rectum, rectosigmoid junction and anus NOS |  |
| B14y.00                                                                   | Malig neop other site rectum, rectosigmoid junction and anus  |  |
| B138.00                                                                   | Malignant neoplasm, overlapping lesion of colon               |  |
| B1z0.11                                                                   | Cancer of bowel                                               |  |
| BB5N100                                                                   | [M]Adenocarcinoma in adenomatous polposis coli                |  |
| BB5N.00                                                                   | [M]Adenomatous and adenocarcinomatous polyps of colon         |  |
| BB5L100                                                                   | [M]Adenocarcinoma in adenomatous polyp                        |  |
| BB5L.00                                                                   | [M]Adenomatous and adenocarcinomatous polyps                  |  |
| BB5L300                                                                   | [M]Adenocarcinoma in multiple adenomatous polyps              |  |
| Abbreviations: NOS, not of                                                | therwise specified.                                           |  |

| Supplementary Table 4. Defined Daily Dose of Proton Pump Inhibitors |       |  |  |  |  |
|---------------------------------------------------------------------|-------|--|--|--|--|
| Proton Pump Inhibitor Type Defined Daily Dose <sup>*</sup>          |       |  |  |  |  |
| Omeprazole                                                          | 20 mg |  |  |  |  |
| Esomeprazole                                                        | 30 mg |  |  |  |  |
| Rabeprazole                                                         | 20 mg |  |  |  |  |
| Lansoprazole                                                        | 30 mg |  |  |  |  |
| Pantoprazole                                                        | 40 mg |  |  |  |  |

\*All doses are equivalent to 1 Defined Daily Dose

The dose of each PPI prescription was defined according to the World Health Organization defined daily dose and converted into omeprazole equivalents.<sup>1</sup> This allows for PPIs with different potencies to be compared. According to the defined daily dose, a patient prescribed a 30-day course of 30-mg of esomeprazole is equivalent to a patient prescribed a 30-day course of 20-mg omeprazole.

| Supplementary Table 5. Crude and Adjusted HRs for the Association Between the Use of Specific Types of Proton Pump |
|--------------------------------------------------------------------------------------------------------------------|
| Inhibitors and Colorectal Cancer Compared to the Use of Histamine-2 Receptor Antagonists                           |

|                                    | Events | Person-years | Crude incidence rate<br>(95% CI) * | Crude HR | Marginal HR<br>(95% CI) † |
|------------------------------------|--------|--------------|------------------------------------|----------|---------------------------|
| Histamine-2 receptor<br>antagonist | 1,264  | 1,440,977    | 87.7 (82.9 to 92.7)                | 1.00     | 1.00 [Reference]          |
| Proton pump inhibitor type         |        |              |                                    |          |                           |
| Esomeprazole                       | 94     | 103,912      | 90.5 (73.1 to 110.7)               | 1.02     | 0.81 (0.64 to 1.01)       |
| Lansoprazole                       | 2,407  | 2,174,265    | 110.7 (106.3 to 115.2)             | 1.28     | 1.04 (0.93 to 1.15)       |
| Omeprazole                         | 3,878  | 3,791,049    | 102.3 (99.1 to 105.6)              | 1.20     | 1.03 (0.91 to 1.15)       |
| Pantoprazole                       | 161    | 134,210      | 120.0 (102.1 to 140.0)             | 1.34     | 1.06 (0.88 to 1.27)       |
| Rabeprazole                        | 214    | 199,263      | 107.4 (93.5 to 122.8)              | 1.21     | 0.92 (0.78 to 1.08)       |
| Combinations                       | 5      | 3,726        | 134.2 (43.6 to 313.2)              | 1.53     | 1.24 (0.51 to 2.99)       |

Abbreviations: CI, confidence interval; HR, hazard ratio

\* Per 100,000 person-years
† Weighted using standardized mortality ratio weights

# Supplementary Table 6. Crude and Adjusted HRs for the Association Between the Use of Proton Pump Inhibitors and Colorectal Cancer Compared to the Use of Histamine-2 Receptor Antagonists (Stratified by Colorectal Cancer Type)

| Cancer Type *                    | Events | Person-years | Crude incidence rate<br>(95% CI) † | Crude HR | Marginal HR<br>(95% CI) ‡ |
|----------------------------------|--------|--------------|------------------------------------|----------|---------------------------|
| Colon                            |        |              |                                    |          |                           |
| Histamine-2 receptor antagonists | 852    | 1,440,977    | 59.1 (55.2 to 63.2)                | 1.00     | 1.00 [Reference]          |
| Proton pump inhibitor            | 4,895  | 6,406,425    | 76.4 (74.3 to 78.6)                | 1.32     | 1.00 (0.88 to 1.14)       |
| Rectal                           |        |              |                                    |          |                           |
| Histamine-2 receptor antagonists | 408    | 1,440,977    | 28.3 (25.6 to 31.2)                | 1.00     | 1.00 [Reference]          |
| Proton pump inhibitor            | 1,834  | 6,406,425    | 28.6 (27.3 to 30.0)                | 1.03     | 1.07 (0.87 to 1.30)       |

Abbreviations: CI, confidence interval; HR, hazard ratio; H2RA, histamine-2 receptor antagonist; PPI, proton pump inhibitor

\* Other colorectal cancer types generated 33 events

† Per 100,000 person-years

### Supplementary Table 7. Adjusted HRs for the Association Between the Use of Proton Pump Inhibitors and Colorectal Cancer Compared to the Use of Histamine-2 Receptor Antagonists (Interaction with Sex)

|                                  | Male                   | Female              |
|----------------------------------|------------------------|---------------------|
| Events                           | 4,338                  | 3,685               |
| Person-Years                     | 3,526,065              | 4,321,337           |
| Crude Incidence Rate (95% CI) *  | 123.0 (119.4 to 126.7) | 85.3 (82.5 to 88.1) |
| Crude HR                         |                        |                     |
| Histamine-2 receptor antagonists | 1.00 [Reference]       | 1.00 [Reference]    |
| Proton pump inhibitors           | 1.19                   | 1.27                |
|                                  |                        | p-interaction: 0.28 |
| Adjusted HR (95% CI) †           |                        |                     |
| Histamine-2 receptor antagonists | 1.00 [Reference]       | 1.00 [Reference]    |
| Proton pump inhibitors           | 0.90 (0.78 to 1.04)    | 1.22 (1.04 to 1.45) |
|                                  |                        | p-interaction: 0.01 |

Abbreviations: HR, hazard ratio; CI, confidence interval

\* Per 100,000 person-years

### Supplementary Table 8. Adjusted HRs for the Association Between the Use of Proton Pump Inhibitors and Colorectal Cancer Compared to the Use of Histamine-2 Receptor Antagonists (Interaction with Age)

|                                  | Age < 40            | Age 40-59           | Age ≥ 60            |
|----------------------------------|---------------------|---------------------|---------------------|
| Events                           | 151                 | 1,806               | 6,066               |
| Person-Years                     | 2,074,653           | 3,128,625           | 2,644,124           |
| Crude Incidence Rate             | 7.3 (6.2 to 8.5)    | 57.7 (55.1 to 60.5) | 229.4 (223.7 to     |
| (95% CI) *                       |                     |                     | 235.3)              |
| Crude HR                         |                     |                     |                     |
| Histamine-2 receptor antagonists | 1.00 [Reference]    | 1.00 [Reference]    | 1.00 [Reference]    |
| Proton pump inhibitors           | 1.08                | 1.22                | 1.01                |
| Adjusted HR (95% CI) †           |                     |                     | p-interaction: 0.05 |
| 5                                |                     |                     |                     |
| Histamine-2 receptor antagonists | 1.00 [Reference]    | 1.00 [Reference]    | 1.00 [Reference]    |
| Proton pump inhibitors           | 0.77 (0.40 to 1.48) | 1.08 (0.84 to 1.40) | 0.97 (0.85 to 1.09) |
|                                  |                     |                     | p-interaction: 0.56 |

Abbreviations: HR, hazard ratio; CI, confidence interval

\* Per 100,000 person-years

<sup>†</sup>Weighted using standardized mortality ratio weights

#### Gut

# Supplementary Table 9. Adjusted HRs for the Association Between the Use of Proton Pump Inhibitors and Colorectal Cancer Compared to the Use of Histamine-2 Receptor Antagonists (Interaction with Gastrointestinal Polyps)

|                                  | Gastrointestinal Polyps | No Gastrointestinal   |
|----------------------------------|-------------------------|-----------------------|
|                                  |                         | Polyps                |
| Events                           | 176                     | 7,847                 |
| Person-Years                     | 80,435                  | 7,766,967             |
| Crude Incidence Rate (95% CI) *  | 218.8 (187.7 to 253.6)  | 101.0 (98.8 to 103.3) |
| Crude HR                         |                         |                       |
| Histamine-2 receptor antagonists | 1.00 [Reference]        | 1.00 [Reference]      |
| Proton pump inhibitors           | 0.91                    | 1.23                  |
|                                  |                         | p-interaction: 0.20   |
| Adjusted HR (95% CI) †           |                         |                       |
| Histamine-2 receptor antagonists | 1.00 [Reference]        | 1.00 [Reference]      |
| Proton pump inhibitors           | 1.22 (0.59 to 2.54)     | 1.02 (0.91 to 1.14)   |
|                                  |                         | p-interaction: 0.63   |

Abbreviations: HR, hazard ratio; CI, confidence interval

\* Per 100,000 person-years

Supplementary Table 10. Adjusted HRs for the Association Between the Use of Proton Pump Inhibitors and Colorectal Cancer Compared to the Use of Histamine-2 Receptor Antagonists (Interaction with Inflammatory Bowel Disease)

|                                  | Inflammatory Bowel    | No Inflammatory Bowel       |
|----------------------------------|-----------------------|-----------------------------|
|                                  | Disease               | <b>Disease Inflammatory</b> |
|                                  |                       | <b>Bowel Disease</b>        |
| Events                           | 92                    | 7,931                       |
| Person-Years                     | 78,948                | 7,768,454                   |
| Crude Incidence Rate (95% CI) *  | 116.5 (93.9 to 142.9) | 102.1 (99.9 to 104.4)       |
| Crude HR                         |                       |                             |
| Histamine-2 receptor antagonists | 1.00 [Reference]      | 1.00 [Reference]            |
| Proton pump inhibitors           | 0.98                  | 1.23                        |
|                                  |                       | p-interaction: 0.44         |
| Adjusted HR (95% CI) †           |                       |                             |
| Histamine-2 receptor antagonists | 1.00 [Reference]      | 1.00 [Reference]            |
| Proton pump inhibitors           | 1.06 (0.26 to 4.29)   | 1.02 (0.92 to 1.14)         |
|                                  |                       | p-interaction: 0.96         |

Abbreviations: HR, hazard ratio; CI, confidence interval

\* Per 100,000 person-years

#### Gut

# Supplementary Table 11. Adjusted HRs for the Association Between the Use of Proton Pump Inhibitors and Colorectal Cancer Compared to the Use of Histamine-2 Receptor Antagonists (Interaction with Aspirin Use)

| <b>_</b>                         | Aspirin History        | No Aspirin History  |
|----------------------------------|------------------------|---------------------|
| Events                           | 2,491                  | 5,532               |
| Person-Years                     | 1,249,495              | 6,597,907           |
| Crude Incidence Rate (95% CI) *  | 199.4 (191.6 to 207.3) | 83.8 (81.7 to 86.1) |
| Crude HR                         |                        |                     |
| Histamine-2 receptor antagonists | 1.00 [Reference]       | 1.00 [Reference]    |
| Proton pump inhibitors           | 1.19                   | 1.14                |
|                                  |                        | p-interaction: 0.58 |
| Adjusted HR (95% CI) †           |                        |                     |
| Histamine-2 receptor antagonists | 1.00 [Reference]       | 1.00 [Reference]    |
| Proton pump inhibitors           | 1.10 (0.91 to 1.34)    | 0.98 (0.86 to 1.12) |
|                                  |                        | p-interaction: 0.33 |

Abbreviations: HR, hazard ratio; CI, confidence interval

\* Per 100,000 person-years

# Supplementary Table 12. Adjusted HRs for the Association Between the Use of Proton Pump Inhibitors and Colorectal Cancer Compared to the Use of Histamine-2 Receptor Antagonists Stratified by Approved Indication at Baseline

| Indication *                        | Events | Person-years | Crude incidence rate<br>(95% CI) † | Crude HR            | Marginal HR<br>(95% CI) ‡ |
|-------------------------------------|--------|--------------|------------------------------------|---------------------|---------------------------|
| Gastroesophageal reflux dise        | ease   |              |                                    |                     |                           |
| Histamine-2 receptor<br>antagonists | 114    | 110,811      | 102.9 (84.9 to 123.6)              | 1.00<br>[Reference] | 1.00 [Reference]          |
| Proton pump inhibitor               | 687    | 626,438      | 109.7 (101.6 to 118.2)             | 1.08                | 0.95 (0.66 to 1.36)       |
| Peptic ulcer disease                |        |              |                                    |                     |                           |
| Histamine-2 receptor antagonists    | 90     | 48,255       | 186.5 (150.0 to 229.3)             | 1.00<br>[Reference] | 1.00 [Reference]          |
| Proton pump inhibitor               | 320    | 176,638      | 181.2 (161.9 to 202.1)             | 0.98                | 0.91 (0.57 to 1.46)       |
| Dyspepsia                           |        |              |                                    |                     |                           |
| Histamine-2 receptor<br>antagonists | 378    | 446,774      | 84.6 (76.3 to 93.6)                | 1.00<br>[Reference] | 1.00 [Reference]          |
| Proton pump inhibitor               | 1,316  | 1,284,222    | 102.5 (97.0 to 108.2)              | 1.24                | 1.27 (1.03 to 1.57)       |

Abbreviations: HR, hazard ratio; CI, confidence interval

\* Barrett's esophagus and *H. pylori* generated few events with unstable estimates

† Per 100,000 person-years

\* Weighted using standardized mortality ratio weights

13

Gut

| Cancer Compared to the Use of Histamine-2 Receptor Antagonists (Different Lag Periods) |        |              |                                    |          |                           |
|----------------------------------------------------------------------------------------|--------|--------------|------------------------------------|----------|---------------------------|
| Length of lag period                                                                   | Events | Person-years | Crude incidence rate<br>(95% CI) * | Crude HR | Marginal HR<br>(95% CI) † |
| 3 years                                                                                |        |              |                                    |          |                           |
| Histamine-2 receptor antagonist                                                        | 882    | 1,000,052    | 88.2 (82.5 to 94.2)                | 1.00     | 1.00 [Reference]          |
| Proton pump inhibitor                                                                  | 4,598  | 4,224,388    | 108.8 (105.7 to 112.0)             | 1.27     | 1.09 (0.95 to 1.25)       |
| 5 years                                                                                |        |              |                                    |          |                           |
| Histamine-2 receptor antagonist                                                        | 623    | 691,325      | 90.1 (83.2 to 97.5)                | 1.00     | 1.00 [Reference]          |
| Proton pump inhibitor                                                                  | 3,069  | 2,671,337    | 114.9 (110.9 to 119.0)             | 1.31     | 1.15 (0.98 to 1.35)       |
| 10 years                                                                               |        |              |                                    |          |                           |
| Histamine-2 receptor antagonist                                                        | 257    | 242,346      | 106.0 (93.5 to 119.8)              | 1.00     | 1.00 [Reference]          |
| Proton pump inhibitor                                                                  | 858    | 647,821      | 132.4 (123.7 to 141.6)             | 1.25     | 1.06 (0.83 to 1.36)       |

Supplementary Table 13. Crude and Adjusted HRs for the Association Between the Use of Proton Pump Inhibitors and Colorectal Cancer Compared to the Use of Histamine-2 Receptor Antagonists (Different Lag Periods)

Abbreviations: CI, confidence interval; HR, hazard ratio

\* Per 100,000 person-years

| Supplementary Table 14. Crude and Adjusted HRs for the Association Between the Use of Proton Pump Inhibitors and Colorectal |
|-----------------------------------------------------------------------------------------------------------------------------|
| Cancer Compared to the Use of Histamine-2 Receptor Antagonists (Intention to Treat Exposure Definition) *                   |

| Analysis                           | Events | Person-years | Crude incidence rate<br>(95% CI) † | Crude HR | Marginal HR<br>(95% CI) ‡ |
|------------------------------------|--------|--------------|------------------------------------|----------|---------------------------|
| Histamine-2 receptor<br>antagonist | 2,589  | 2,565,103    | 100.9 (97.1 to 104.9)              | 1.00     | 1.00 [Reference]          |
| Proton pump inhibitor              | 7,322  | 6,912,360    | 105.9 (103.5 to 108.4)             | 1.12     | 0.97 (0.89 to 1.04)       |

Abbreviations: CI, confidence interval; HR, hazard ratio

\* Did not censor on switch between drug classes

† Per 100,000 person-years‡ Weighted using standardized mortality ratio weights

| Cancer Compared to the Use of Histamine-2 Receptor Antagonists (IPCW) |        |              |                                    |          |                           |  |
|-----------------------------------------------------------------------|--------|--------------|------------------------------------|----------|---------------------------|--|
|                                                                       | Events | Person-years | Crude incidence rate<br>(95% CI) * | Crude HR | Marginal HR<br>(95% CI) † |  |
| Histamine-2 receptor<br>antagonist                                    | 1,264  | 1,892,953    | 66.8 (63.1 to 70.6)                | 1.00     | 1.00 [Reference]          |  |

80.8 (78.9 to 82.7)

1.23

1.02 (0.85 to 1.21)

Supplementary Table 15, Crude and Adjusted HRs for the Association Between the Use of Proton Pump Inhibitors and Colorectal

Abbreviations: CI, confidence interval; HR, hazard ratio

6,759

\* Per 100,000 person-years

Proton pump inhibitor

<sup>†</sup> Weighted using standardized mortality ratio weights and stabilized inverse probability of censoring weights for death and switching

8,365,632

# Supplementary Table 16. Crude and Adjusted HRs for the Association Between the Use of Proton Pump Inhibitors and Colorectal Cancer Compared to the Use of Histamine-2 Receptor Antagonists (Truncate Follow-up for Possible NDMA Contaminant) \*

|                                    | Events | Person-years | Crude incidence rate<br>(95% CI) † | Crude HR | Marginal HR<br>(95% CI) ‡ |
|------------------------------------|--------|--------------|------------------------------------|----------|---------------------------|
| Histamine-2 receptor<br>antagonist | 1,245  | 1,438,394    | 86.6 (81.8 to 91.5)                | 1.00     | 1.00 [Reference]          |
| Proton pump inhibitor              | 6,269  | 6,372,752    | 98.4 (96.0 to 100.8)               | 1.15     | 1.00 (0.90 to 1.12)       |

Abbreviations: CI, confidence interval; HR, hazard ratio

\* Follow-up truncated on December 31, 2017

† Per 100,000 person-years

| Supplementary Table 17. Crude and Adjusted HRs for the Association Between the Use of Proton Pump Inhibitors and Colorectal |
|-----------------------------------------------------------------------------------------------------------------------------|
| Cancer Compared to the Use of Histamine-2 Receptor Antagonists (High-dimensional Propensity Score) *                        |

|                                    | Events | Person-years | Crude incidence rate<br>(95% CI) † | Crude HR | Marginal HR<br>(95% CI) ‡ |
|------------------------------------|--------|--------------|------------------------------------|----------|---------------------------|
| Histamine-2 receptor<br>antagonist | 1,264  | 1,440,924    | 87.7 (83.0 to 92.7)                | 1.00     | 1.00 [Reference]          |
| Proton pump inhibitor              | 6,758  | 6,406,237    | 105.5 (103.0 to 108.0)             | 1.23     | 0.99 (0.88 to 1.12)       |

Abbreviations: CI, confidence interval; HR, hazard ratio

\* Treatment weights created using predefined covariates listed in the manuscript and 200 empirically selected covariates from the high-dimensional propensity score algorithm

† Per 100,000 person-years‡ Weighted using standardized mortality ratio weights

| Supplementary Table 18. Crude and Adjusted HRs for the Association Between the Use of Proton Pump Inhibitors and Colorectal |
|-----------------------------------------------------------------------------------------------------------------------------|
| Cancer Compared to the Use of Histamine-2 Receptor Antagonists (Inverse Probability of Screening Weights) *                 |

|                                    | Events | Person-intervals | Crude incidence rate<br>(95% CI) † | Crude HR | Marginal HR<br>(95% CI) ‡ |
|------------------------------------|--------|------------------|------------------------------------|----------|---------------------------|
| Histamine-2 receptor<br>antagonist | 1,264  | 1,005,714        | 125.7 (118.8 to 132.8)             | 1.00     | 1.00 [Reference]          |
| Proton pump inhibitor              | 6,759  | 4,478,253        | 150.9 (147.4 to 154.6)             | 1.20     | 1.24 (0.66 to 2.34)       |

Abbreviations: CI, confidence interval; HR, hazard ratio

\* Screening weights calculated within 2-year intervals

† Per 100,000 person-intervals

\* Weighted using standardized mortality ratio weights and stabilized inverse probability of screening rates for colorectal screening

| Supplementary Tabl  | Supplementary Table 19. Summary of observational studies assessing the association between PPIs and colorectal cancer |             |                          |                                               |  |  |
|---------------------|-----------------------------------------------------------------------------------------------------------------------|-------------|--------------------------|-----------------------------------------------|--|--|
| First Author (Year) | Study Design                                                                                                          | Study Size  | Effect estimate (95% CI) | Main Limitation                               |  |  |
| Yang (2007)         | Nested case-control                                                                                                   | 48,724      | OR: 1.1 (0.7 to 1.9)     | Confounding by indication                     |  |  |
|                     |                                                                                                                       |             |                          | Latency bias                                  |  |  |
|                     |                                                                                                                       |             |                          | Prevalent users                               |  |  |
| Robertson (2007)    | Nested case-control                                                                                                   | 61,479      | OR: 1.11 (0.97 to 1.27)  | Confounding by indication                     |  |  |
|                     |                                                                                                                       |             |                          | Prevalent users                               |  |  |
|                     |                                                                                                                       |             |                          | Time-window bias                              |  |  |
| Van Soest (2008)    | Nested case-control                                                                                                   | 8,384       | OR: 0.85 (0.63 to 1.16)  | Confounding by indication                     |  |  |
|                     |                                                                                                                       |             |                          | Prevalent users                               |  |  |
| Chubak (2009)       | Case-control                                                                                                          | 1,282       | OR: 1.7 (0.8 to 4.0)     | Confounding by indication                     |  |  |
|                     |                                                                                                                       |             |                          | Prevalent users                               |  |  |
|                     |                                                                                                                       |             |                          | Time-window bias                              |  |  |
| Lai (2013)          | Nested case-control                                                                                                   | 3,989       | OR: 2.54 (2.31 to 2.79)  | Confounding by indication                     |  |  |
|                     |                                                                                                                       |             |                          | Latency bias                                  |  |  |
|                     |                                                                                                                       |             |                          | Prevalent users                               |  |  |
|                     |                                                                                                                       |             |                          | Time-window bias                              |  |  |
| Hwang (2017)        | Cohort                                                                                                                | 451,284     | Low dose PPI HR: 0.96    | Confounding by indication                     |  |  |
|                     |                                                                                                                       |             | (0.88 to 1.06)           | Latency bias                                  |  |  |
|                     |                                                                                                                       |             | High dose PPI HR: 0.98   |                                               |  |  |
| T : (2020)          |                                                                                                                       | 00 744      | (0.78 to 1.24)           |                                               |  |  |
| Lei (2020)          | Cohort                                                                                                                | 90,764      | HR: 2.03 (1.56 to 2.63)  | Confounding by indication                     |  |  |
| D 11 (2020)         |                                                                                                                       | 155.0504    |                          | Immortal time bias                            |  |  |
| Babic (2020)        | Cohort                                                                                                                | 175,859*    | HR: 0.89 (0.71 to 1.12)  | Confounding by indication                     |  |  |
|                     |                                                                                                                       |             |                          | Prevalent users                               |  |  |
| H : (2020)          | G 1                                                                                                                   | 0.000       |                          | Self-reported exposure                        |  |  |
| Kuiper (2020)       | Case-control                                                                                                          | 9,890       | OR: 1.08 (0.97 to 1.21)  | Confounding by indication                     |  |  |
|                     |                                                                                                                       |             |                          | Latency bias                                  |  |  |
|                     |                                                                                                                       |             |                          | Prevalent users                               |  |  |
|                     |                                                                                                                       | . = 0 = . = |                          | Time-window bias                              |  |  |
| Lee (2020)          | Nested case-control                                                                                                   | 178,717     | OR: 1.05 (0.99 to 1.12)  | Confounding by indication                     |  |  |
|                     |                                                                                                                       |             |                          | Differential exclusion by case/control status |  |  |

Abbreviations: OR: odds ratio; HR: hazard ratio, PPI: proton pump inhibitors.

\*Combined from three separate cohorts.

### Supplementary Method 1. Inverse Probability of Censoring Weights

We used inverse probability of censoring weighting to assess the potential impact of differential censoring from drug switching (i.e. PPI users adding-on or switching to H2RAs, and vice versa)<sup>2</sup> <sup>3</sup> and to investigate death as a competing risk between PPI and H2RA users.<sup>4</sup> This analysis was completed in three steps.

**Step 1:** For both exposure groups, the follow-up period was sudivided into one-year intervals. Within each interval, inverse probability of censoring weights (IPCWs) were fit, separately for the PPI and H2RA cohorts, using multivariable logistic regression within 5-year bands of calendar year to predict the probability of remaining uncensored (i.e. not switching or adding on from PPI to H2RA and vice versa). The models were conditional on the following variables, all measured in the previous interval: age, sex, alcohol related disorders (alcohol dependency, alcoholic cirrhosis of the liver, alcoholic hepatitis, hepatic failure), smoking status (current, former, never, unknown), body mass index, type 2 diabetes, hypertension, coronary artery disease, chronic obstructive pulmonary disease, cancer (other than nonmelanoma skin cancer), Crohn's disease, ulcerative colitis, other inflammatory bowel disease, gastrointestinal polyps, cholecystectomy, solid organ transplant, indications for acid suppressant drug use (approved indications: Barrett's esophagus, Helicobacter pylori infection, gastro-oesophageal reflux disease, peptic ulcer disease, dyspepsia; off-label indications: gastritis/duodenitis and stomach pain) and use of the following medications: hormone replacement therapy, aspirin, other non-steroidal anti-inflammatory drugs, statins and bisphosphonates, and use of synthetic prostaglandin analogues and measures of health-seeking behaviour, including mammographic screening, prostate exams, colorectal cancer screening, and influenza vaccination.

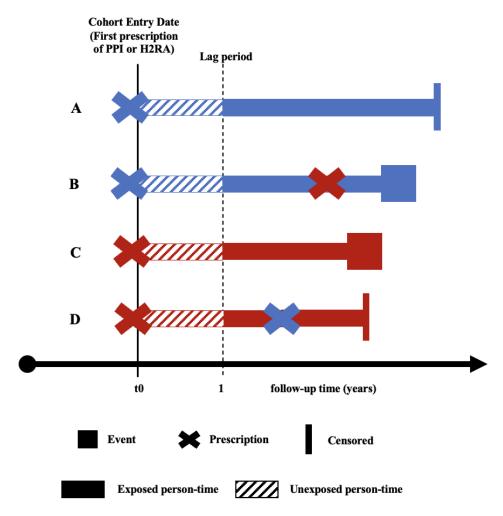
**Step 2**: We repeated step 1 by fitting a multivariable logistic regression model for remaining alive at a given interval (i.e. not having death as a competing event), using the same covariates as above.

**Step 3:** Using the fitted logistic models generated in Steps 1 and 2, we took the product of the weights (i.e. inverse of the probability of being uncensored from drug switching and from not dying) across all intervals for a given patient. IPCWs were stabilized using intercept only models as the numerator, and truncated at the 0.5<sup>th</sup> and 99.5<sup>th</sup> percentile. These stabilized weights were combined with standardized mortlaity ratio wegiths for each patient to generate a final weight. Marginal hazard ratios of colorectal cancer associated with the use of PPIs compared with H2RAs were estimated using the final weights.

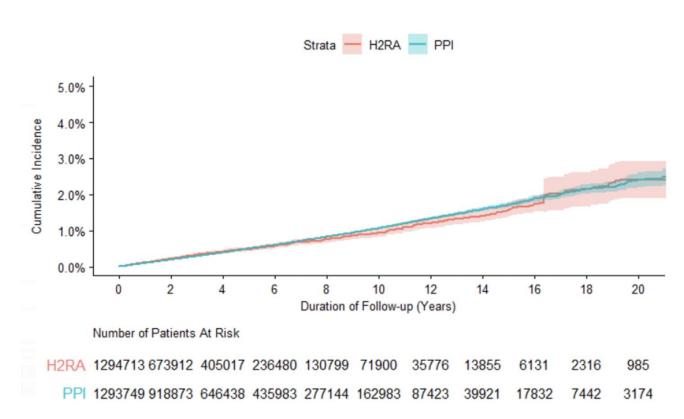
# Supplementary Method 2. High-dimensional Propensity-scores

To investigate the impact of residual confounding, we reweighted our cohort using highdimensional propensity scores (HD-PS). The HD-PS is a seven-step algorithm which empirically selects covariates from different data dimensions based on their prevalence and potential for confounding.<sup>5</sup> As the HD-PS is a summary score, it is an efficient way to control for a wide range of confounders. The HD-PS may also account for some unmeasured confounders, as the empirically selected covariates may include proxies for unknown or unmeasured confounders.<sup>6</sup>

Using the HD-PS algorithm, we empirically selected 200 covariates from five data dimensions: prescriptions, procedures, diagnoses, disease history and administrative files. Using multivariable logistic regression, conditional on the empirically selected and predefined covariates (including calendar year of cohort entry), we estimated the predicted probability of received a PPI versus an H2RA. Using these propensity score values we reweighted the cohort using standardized mortality ratio weighting, where exposed to PPIs were given a weight of 1, and patients exposed to H2RAs were given a weight of the odds of treatment probability (PS/[1-PS]).<sup>7</sup> For this analysis, we then combined the SMR weights with IPCWs, and marginal hazard ratios for colorectal cancer for users of PPIs compared to users of H2RAs were estimated using Cox proportional hazards models.

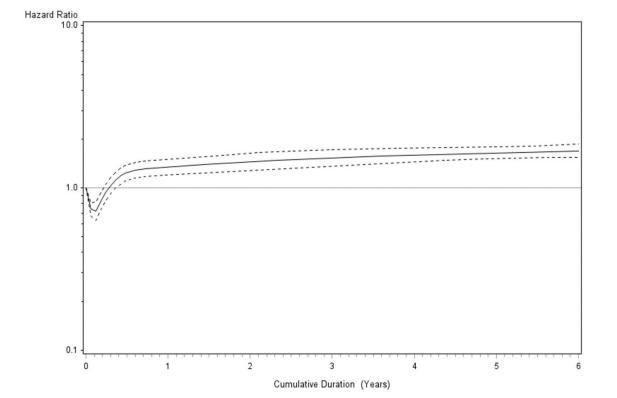

# Supplementary Method 3. Inverse Probability of Screening Weights

To investigate the potential for detection bias from differential screening uptake between exposure groups, we used inverse probability of screening weights (IPSWs) to reweight our cohort.<sup>8</sup> For this analysis, the cohort was divided into 2-year intervals of follow-up. Within each interval, we estimated the predicted probability (P<sub>screen</sub>) of colorectal screening (i.e., fecal occult blood testing or colon neoplasm screening) using multivariable logistic regression, conditional on the following covariates, all measured in the previous interval:


age, year of cohort entry, sex, alcohol-related disorders, smoking status (current, former, never), BMI, type 2 diabetes, hypertension, coronary artery disease, chronic obstructive pulmonary disease, cancer (other than nonmelanoma skin cancer), Crohn's disease, ulcerative colitis, other inflammatory bowel disease, gastrointestinal polyps, cholecystectomy, and solid organ transplant. We also considered the indication for acid suppressant drug use (approved indications: peptic ulcer disease, gastroesophageal reflux disease, dyspepsia, *Helicobacter pylori* infection, and Barrett's oesophagus; off-label indications: gastritis/duodenitis and stomach pain). We also included the following drugs previously associated with colorectal cancer incidence, measured at any time before cohort entry: hormone replacement therapy, aspirin, other non-steroidal anti-inflammatory drugs, statins, bisphosphonates, and use of synthetic prostaglandin analogues, which are older drugs used to manage gastric conditions.<sup>1</sup> We also included measures of health-seeking behaviours, such as mammographic screening, prostate-specific antigen testing, influenza vaccination and the number of physician visits in the previous interval. Finally, we included the country, to account for differences in screening programs by region, and use of anticoagulants, which may be associated with closer patient monitoring.

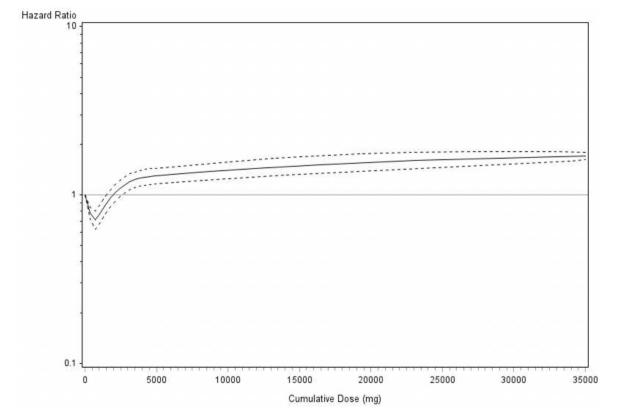
Any screening events that were considered diagnostic were not included. The weights were stabilized using the overall proportion of screening within the population (20%). Thus, patients who were screened were given a weight of  $0.2/P_{screen}$ , and patients who were not screened were given a weight of  $0.8/(1-P_{screen})$ .<sup>8</sup> Screening weights calculated at each interval were combined with standardized mortality ratio weights, and the overall weight was used to reweight the study cohort. Thus, marginal hazard ratios for colorectal cancer, adjusted for screening and treatment, were calculated using Cox proportional hazards models.

### **Supplementary Figure 1. Exposure Definition**




Supplementary figure 1 illustrates the exposure definition used to define incident PPI and H2RA users. Blue graphics represent PPIs, and red graphics represent H2RAs. Patients A and B enter the cohort as PPI users. Following the one-year lag period, illustrated by the dashed box, both patients contribute PPI exposed person-time to the analysis. When patient B switches to an H2RA (red X), they are considered exposed to PPIs for one additional year (lag period = one year). Thus, when patient B has an event, it is considered a PPI event. Patients C and D enter the cohort as H2RA users. Following the one year-lag period, they contribute person-time to the H2RA exposed group. Patient C has an event during follow-up, classified as an event for the comparator. Patient D switches to a PPI during follow-up (blue X) and thus contributes one additional year as an H2RA user before they are censored.




# Supplementary Figure 2. Weighted Kaplan-Meier Curve of the Cumulative Incidence of Colorectal Cancer

Follow-up starts one year after cohort entry Curves are weighted using standardized mortality ratio weights



### Supplementary Figure 3. Restricted Cubic Spline of Cumulative Duration of Proton Pump Inhibitor Use

Smooth restricted cubic spline curve of weighted hazard ratio of colorectal cancer disease (solid line) and 95% confidence limits (dashed lines) as function of cumulative duration of proton pump inhibitor use. Cumulative duration was truncated at six years of use because of few events.



# Supplementary Figure 4. Restricted Cubic Spline of Cumulative Dose of Proton Pump Inhibitor Use

Smooth restricted cubic spline curve of weighted hazard ratio of colorectal cancer disease (solid line) and 95% confidence limits (dashed lines) as a function of cumulative omeprazole equivalents. Cumulative dose was truncated at 35,000 mg because of few events.

Gut

#### References

 WHO Collaborating Centre for Drug Statistics Methodology: Definition and General Considerations 2018 [Available from:

https://www.whocc.no/ddd/definition and general considera/].

- Robins JM, Hernan MA, Brumback B. Marginal structural models and causal inference in epidemiology. Epidemiology. 2000:550-60.
- Hernán MÁ, Brumback B, Robins JM. Marginal structural models to estimate the causal effect of zidovudine on the survival of HIV-positive men. Epidemiology. 2000;11(5):561-70.
- Weuve J, Tchetgen Tchetgen EJ, Glymour MM, Beck TL, Aggarwal NT, Wilson RS, et al. Accounting for bias due to selective attrition: the example of smoking and cognitive decline. Epidemiology. 2012;23(1):119-28.
- Schneeweiss S, Rassen JA, Glynn RJ, Avorn J, Mogun H, Brookhart MA. Highdimensional propensity score adjustment in studies of treatment effects using health care claims data. Epidemiology (Cambridge, Mass.). 2009;20(4):512-22.
- 6. Guertin JR, Rahme E, LeLorier J. Performance of the high-dimensional propensity score in adjusting for unmeasured confounders. Eur J Clin Pharmacol. 2016;72(12):1497-505.
- Desai RJ, Franklin JM. Alternative approaches for confounding adjustment in observational studies using weighting based on the propensity score: a primer for practitioners. BMJ. 2019;367:15657.
- Cook NR, Rosner BA, Hankinson SE, et al. Mammographic screening and risk factors for breast cancer. *Am J Epidemiol* 2009;170(11):1422-32.