Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Organization of immunological memory by bone marrow stroma

Key Points

  • The important role of stromal cells in the regulation of immune responses is becoming increasingly appreciated. In addition to providing a supportive lattice for lymphocytes by expressing adhesion molecules, the stroma directs lymphocyte migration by secreting chemokines and can interact with lymphocytes through cytokine secretion.

  • In addition to the relevance of stromal cells in the initiation of immune responses, there is evidence that these cells regulate the generation and maintenance of immunological memory. Follicular dendritic cells are involved in the generation of memory B cells and plasma cells during germinal centre reactions.

  • Bone marrow stroma is thought to have a role in the maintenance of several types of memory lymphocytes. It is composed of mesenchymal stromal cells, endothelial cells, osteoblasts and adipocytes.

  • Long-lived plasma cells have been shown to dock on a subpopulation of CXCL12+VCAM1+ mesenchymal stromal cells that is thought to form specific survival niches for those cells, thus regulating the size of the memory plasma cell compartment. Resting memory CD4+ T cells also reside in the bone marrow but, in contrast to plasma cells, they are found in close association with IL-7+VCAM1+ stromal cells.

  • Memory B cells are thought to be localized in the spleen, but their microanatomical niche has not been defined in detail. The localization of resting memory CD8+ T cells is currently unclear.

  • A deeper understanding of stromal cell populations and subpopulations in different anatomical locations is necessary to identify the molecular mechanisms involved in the maintenance of immunological memory.

Abstract

Immunological memory is a hallmark of the adaptive immune system. Plasma cells and memory B and T cells collectively provide protective immunity and effective secondary immune responses to invading pathogens. Here, we discuss how mesenchymal stromal cells regulate immunological memory by organizing defined numbers of dedicated survival niches for plasma cells and memory T cells in the bone marrow and also, to a lesser extent, in secondary lymphoid organs. An understanding of the biology of mesenchymal stromal cells and their interaction with cells of the immune system is key to fully understanding immunological memory.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Overall organization of bone marrow stroma.
Figure 2: Development of bone marrow stromal cells and their role in B cell ontogeny and memory maintenance.

Similar content being viewed by others

References

  1. Friedenstein, A. J., Chailakhyan, R. K., Latsinik, N. V., Panasyuk, A. F. & Keiliss-Borok, I. V. Stromal cells responsible for transferring the microenvironment of the hemopoietic tissues. Cloning in vitro and retransplantation in vivo. Transplantation 17, 331–340 (1974).

    CAS  PubMed  Google Scholar 

  2. Mueller, S. N. & Germain, R. N. Stromal cell contributions to the homeostasis and functionality of the immune system. Nature Rev. Immunol. 9, 618–629 (2009).

    Article  CAS  Google Scholar 

  3. Ahmed, R. & Gray, D. Immunological memory and protective immunity: understanding their relation. Science 272, 54–60 (1996).

    Article  CAS  PubMed  Google Scholar 

  4. Zinkernagel, R. M. et al. On immunological memory. Annu. Rev. Immunol. 14, 333–367 (1996).

    Article  CAS  PubMed  Google Scholar 

  5. Radbruch, A. et al. Competence and competition: the challenge of becoming a long-lived plasma cell. Nature Rev. Immunol. 6, 741–750 (2006).

    Article  CAS  Google Scholar 

  6. Kalia, V., Sarkar, S., Gourley, T. S., Rouse, B. T. & Ahmed, R. Differentiation of memory B and T cells. Curr. Opin. Immunol. 18, 255–264 (2006).

    Article  CAS  PubMed  Google Scholar 

  7. Nakayama, T. & Yamashita, M. Initiation and maintenance of Th2 cell identity. Curr. Opin. Immunol. 20, 265–271 (2008).

    Article  CAS  PubMed  Google Scholar 

  8. Zhou, L., Chong, M. M. & Littman, D. R. Plasticity of CD4+ T cell lineage differentiation. Immunity 30, 646–655 (2009).

    Article  CAS  PubMed  Google Scholar 

  9. Lohning, M. et al. Long-lived virus-reactive memory T cells generated from purified cytokine-secreting T helper type 1 and type 2 effectors. J. Exp. Med. 205, 53–61 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Radbruch, A. & Rajewsky, K. in The Molecular Biology of B cells (eds Alt, F. W., Honjo, T. & Neuberger M.) 247–259 (Elsevier Academic, London, 2004).

    Google Scholar 

  11. Nossal, G. J. Genetic control of lymphopoiesis, plasma cell formation, and antibody production. Int. Rev. Exp. Pathol. 1, 1–72 (1962).

    CAS  PubMed  Google Scholar 

  12. Miller, J. J. An autoradiographic study of plasma cell and lymphocyte survival in rat popliteal lymph nodes. J. Immunol. 92, 673–681 (1964).

    PubMed  Google Scholar 

  13. Holt, P. G., Sedgwick, J. D., O'Leary, C., Krska, K. & Leivers, S. Long-lived IgE- and IgG-secreting cells in rodents manifesting persistent antibody responses. Cell. Immunol. 89, 281–289 (1984).

    Article  CAS  PubMed  Google Scholar 

  14. Ho, F., Lortan, J. E., MacLennan, I. C. & Khan, M. Distinct short-lived and long-lived antibody-producing cell populations. Eur. J. Immunol. 16, 1297–1301 (1986).

    Article  CAS  PubMed  Google Scholar 

  15. Manz, R. A., Thiel, A. & Radbruch, A. Lifetime of plasma cells in the bone marrow. Nature 388, 133–134 (1997). This paper shows that plasma cells are long lived and reside in the bone marrow.

    Article  CAS  PubMed  Google Scholar 

  16. Slifka, M. K., Antia, R., Whitmire, J. K. & Ahmed, R. Humoral immunity due to long-lived plasma cells. Immunity 8, 363–372 (1998).

    Article  CAS  PubMed  Google Scholar 

  17. Manz, R. A., Lohning, M., Cassese, G., Thiel, A. & Radbruch, A. Survival of long-lived plasma cells is independent of antigen. Int. Immunol. 10, 1703–1711 (1998).

    Article  CAS  PubMed  Google Scholar 

  18. Hoyer, B. F. et al. Short-lived plasmablasts and long-lived plasma cells contribute to chronic humoral autoimmunity in NZB/W mice. J. Exp. Med. 199, 1577–1584 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Benner, R., Meima, F., van der Meulen, G. M. & van Muiswinkel, W. B. Antibody formation in mouse bone marrow. I. Evidence for the development of plaque-forming cells in situ. Immunology 26, 247–255 (1974).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Tokoyoda, K., Egawa, T., Sugiyama, T., Choi, B. I. & Nagasawa, T. Cellular niches controlling B lymphocyte behavior within bone marrow during development. Immunity 20, 707–718 (2004). This study shows that in the bone marrow CXCL12-expressing mesenchymal stromal cells interact with pre-pro-B cells and plasma cells, and IL-7-expressing mesenchymal stromal cells interact with pro-B cells.

    Article  CAS  PubMed  Google Scholar 

  21. Tokoyoda, K. et al. Professional memory CD4+ T lymphocytes preferentially reside and rest in the bone marrow. Immunity 30, 721–730 (2009). This study shows that memory CD4+ T cells are maintained on IL-7-expressing mesenchymal stromal cells.

    Article  CAS  PubMed  Google Scholar 

  22. Tokoyoda, K., Zehentmeier, S., Chang, H. D. & Radbruch, A. Organization and maintenance of immunological memory by stroma niches. Eur. J. Immunol. 39, 2095–2099 (2009).

    Article  CAS  PubMed  Google Scholar 

  23. Greenberger, J. S. The hematopoietic microenvironment. Crit. Rev. Oncol. Hematol. 11, 65–84 (1991).

    Article  CAS  PubMed  Google Scholar 

  24. Cattoretti, G., Schiro, R., Orazi, A., Soligo, D. & Colombo, M. P. Bone marrow stroma in humans: anti-nerve growth factor receptor antibodies selectively stain reticular cells in vivo and in vitro. Blood 81, 1726–1738 (1993).

    CAS  PubMed  Google Scholar 

  25. Clark, B. R. & Keating, A. Biology of bone marrow stroma. Ann. NY Acad. Sci. 770, 70–78 (1995).

    Article  CAS  PubMed  Google Scholar 

  26. Krebsbach, P. H., Kuznetsov, S. A., Bianco, P. & Robey, P. G. Bone marrow stromal cells: characterization and clinical application. Crit. Rev. Oral Biol. Med. 10, 165–181 (1999).

    Article  CAS  PubMed  Google Scholar 

  27. Bianco, P., Riminucci, M., Gronthos, S. & Robey, P. G. Bone marrow stromal stem cells: nature, biology, and potential applications. Stem Cells 19, 180–192 (2001).

    Article  CAS  PubMed  Google Scholar 

  28. Morikawa, S. et al. Prospective identification, isolation, and systemic transplantation of multipotent mesenchymal stem cells in murine bone marrow. J. Exp. Med. 206, 2483–2496 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Funk, P. E., Stephan, R. P. & Witte, P. L. Vascular cell adhesion molecule 1-positive reticular cells express interleukin-7 and stem cell factor in the bone marrow. Blood 86, 2661–2671 (1995).

    CAS  PubMed  Google Scholar 

  30. Honczarenko, M. et al. Human bone marrow stromal cells express a distinct set of biologically functional chemokine receptors. Stem Cells 24, 1030–1041 (2006).

    Article  CAS  PubMed  Google Scholar 

  31. Pittenger, M. F. et al. Multilineage potential of adult human mesenchymal stem cells. Science 284, 143–147 (1999).

    Article  CAS  PubMed  Google Scholar 

  32. Bentley, S. A., Alabaster, O. & Foidart, J. M. Collagen heterogeneity in normal human bone marrow. Br. J. Haematol. 48, 287–291 (1981).

    Article  CAS  PubMed  Google Scholar 

  33. Weiss, L. & Chen, L. T. The organization of hematopoietic cords and vascular sinuses in bone marrow. Blood Cells 1, 617–638 (1975).

    Google Scholar 

  34. Patt, H. M. & Maloney, M. A. Bone marrow regeneration after local injury: a review. Exp. Hematol. 3, 135–148 (1975).

    CAS  PubMed  Google Scholar 

  35. Chan, P. Y. & Aruffo, A. VLA-4 integrin mediates lymphocyte migration on the inducible endothelial cell ligand VCAM-1 and the extracellular matrix ligand fibronectin. J. Biol. Chem. 268, 24655–24664 (1993).

    CAS  PubMed  Google Scholar 

  36. Springer, T. A. Traffic signals on endothelium for lymphocyte recirculation and leukocyte emigration. Annu. Rev. Physiol. 57, 827–872 (1995).

    Article  CAS  PubMed  Google Scholar 

  37. Jacobsen, K., Kravitz, J., Kincade, P. W. & Osmond, D. G. Adhesion receptors on bone marrow stromal cells: in vivo expression of vascular cell adhesion molecule-1 by reticular cells and sinusoidal endothelium in normal and γ-irradiated mice. Blood 87, 73–82 (1996).

    CAS  PubMed  Google Scholar 

  38. Newman, P. J. et al. PECAM-1 (CD31) cloning and relation to adhesion molecules of the immunoglobulin gene superfamily. Science 247, 1219–1222 (1990).

    Article  CAS  PubMed  Google Scholar 

  39. Clark, B. R., Gallagher, J. T. & Dexter, T. M. Cell adhesion in the stromal regulation of haemopoiesis. Baillieres Clin. Haematol. 5, 619–652 (1992).

    Article  CAS  PubMed  Google Scholar 

  40. Zuckerman, K. S. & Wicha, M. S. Extracellular matrix production by the adherent cells of long-term murine bone marrow cultures. Blood 61, 540–547 (1983).

    CAS  PubMed  Google Scholar 

  41. Nilsson, S. K. et al. Immunofluorescence characterization of key extracellular matrix proteins in murine bone marrow in situ. J. Histochem. Cytochem. 46, 371–377 (1998).

    Article  CAS  PubMed  Google Scholar 

  42. Keating, A. et al. Donor origin of the in vitro haematopoietic microenvironment after marrow transplantation in man. Nature 298, 280–283 (1982).

    Article  CAS  PubMed  Google Scholar 

  43. Cooper, A. R. & MacQueen, H. A. Subunits of laminin are differentially synthesized in mouse eggs and early embryos. Dev. Biol. 96, 467–471 (1983).

    Article  CAS  PubMed  Google Scholar 

  44. Waller, E. K., Huang, S. & Terstappen, L. Changes in the growth properties of CD34+, CD38 bone marrow progenitors during human fetal development. Blood 86, 710–718 (1995).

    CAS  PubMed  Google Scholar 

  45. Simmons, P. J. & Torok-Storb, B. Identification of stromal cell precursors in human bone marrow by a novel monoclonal antibody, STRO-1. Blood 78, 55–62 (1991).

    CAS  PubMed  Google Scholar 

  46. Keating, A., Whalen, C. K. & Singer, J. W. Cultured marrow stromal cells express common acute lymphoblastic leukaemia antigen (CALLA): implications for marrow transplantation. Br. J. Haematol. 55, 623–628 (1983).

    Article  CAS  PubMed  Google Scholar 

  47. Dennis, J. E. & Charbord, P. Origin and differentiation of human and murine stroma. Stem Cells 20, 205–214 (2002).

    Article  CAS  PubMed  Google Scholar 

  48. Mythreye, K. & Blobe, G. C. Proteoglycan signaling co-receptors: roles in cell adhesion, migration and invasion. Cell. Signal. 21, 1548–1558 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Friedenstein, A. J., Petrakova, K. V., Kurolesova, A. I. & Frolova, G. P. Heterotopic of bone marrow. Analysis of precursor cells for osteogenic and hematopoietic tissues. Transplantation 6, 230–247 (1968).

    Article  CAS  PubMed  Google Scholar 

  50. Caplan, A. I. Mesenchymal stem cells. J. Orthop. Res. 9, 641–650 (1991).

    Article  CAS  PubMed  Google Scholar 

  51. Horwitz, E. M. et al. Clarification of the nomenclature for MSC: The International Society for Cellular Therapy position statement. Cytotherapy 7, 393–395 (2005).

    Article  CAS  PubMed  Google Scholar 

  52. Dominici, M. et al. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 8, 315–317 (2006).

    Article  CAS  PubMed  Google Scholar 

  53. Uccelli, A., Moretta, L. & Pistoia, V. Mesenchymal stem cells in health and disease. Nature Rev. Immunol. 8, 726–736 (2008).

    Article  CAS  Google Scholar 

  54. Bartholomew, A. et al. Mesenchymal stem cells suppress lymphocyte proliferation in vitro and prolong skin graft survival in vivo. Exp. Hematol. 30, 42–48 (2002).

    Article  PubMed  Google Scholar 

  55. Di Nicola, M. et al. Human bone marrow stromal cells suppress T-lymphocyte proliferation induced by cellular or nonspecific mitogenic stimuli. Blood 99, 3838–3843 (2002).

    Article  CAS  PubMed  Google Scholar 

  56. Krampera, M. et al. Bone marrow mesenchymal stem cells inhibit the response of naive and memory antigen-specific T cells to their cognate peptide. Blood 101, 3722–3729 (2003).

    Article  CAS  PubMed  Google Scholar 

  57. Meisel, R. et al. Human bone marrow stromal cells inhibit allogeneic T-cell responses by indoleamine 2, 3-dioxygenase-mediated tryptophan degradation. Blood 103, 4619–4621 (2004).

    Article  CAS  PubMed  Google Scholar 

  58. Glennie, S., Soeiro, I., Dyson, P. J., Lam, E. W. & Dazzi, F. Bone marrow mesenchymal stem cells induce division arrest anergy of activated T cells. Blood 105, 2821–2827 (2005).

    Article  CAS  PubMed  Google Scholar 

  59. Plumas, J. et al. Mesenchymal stem cells induce apoptosis of activated T cells. Leukemia 19, 1597–1604 (2005).

    Article  CAS  PubMed  Google Scholar 

  60. Aggarwal, S. & Pittenger, M. F. Human mesenchymal stem cells modulate allogeneic immune cell responses. Blood 105, 1815–1822 (2005).

    Article  CAS  PubMed  Google Scholar 

  61. Pabst, R. Plasticity and heterogeneity of lymphoid organs. What are the criteria to call a lymphoid organ primary, secondary or tertiary? Immunol. Lett. 112, 1–8 (2007).

    Article  CAS  PubMed  Google Scholar 

  62. Sipkins, D. A. et al. In vivo imaging of specialized bone marrow endothelial microdomains for tumour engraftment. Nature 435, 969–973 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Holmes, K., Roberts, O. L., Thomas, A. M. & Cross, M. J. Vascular endothelial growth factor receptor-2: structure, function, intracellular signalling and therapeutic inhibition. Cell. Signal. 19, 2003–2012 (2007).

    Article  CAS  PubMed  Google Scholar 

  64. Kopp, H. G., Hooper, A. T., Avecilla, S. T. & Rafii, S. Functional heterogeneity of the bone marrow vascular niche. Ann. NY Acad. Sci. 1176, 47–54 (2009).

    Article  CAS  PubMed  Google Scholar 

  65. Kiel, M. J., Yilmaz, O. H., Iwashita, T., Terhorst, C. & Morrison, S. J. SLAM family receptors distinguish hematopoietic stem and progenitor cells and reveal endothelial niches for stem cells. Cell 121, 1109–1121 (2005).

    Article  CAS  PubMed  Google Scholar 

  66. Sapoznikov, A. et al. Perivascular clusters of dendritic cells provide critical survival signals to B cells in bone marrow niches. Nature Immunol. 9, 388–395 (2008).

    Article  CAS  Google Scholar 

  67. Pereira, J. P., An, J., Xu, Y., Huang, Y. & Cyster, J. G. Cannabinoid receptor 2 mediates the retention of immature B cells in bone marrow sinusoids. Nature Immunol. 10, 403–411 (2009).

    Article  CAS  Google Scholar 

  68. Maeda, K., Kosco-Vilbois, M. H., Burton, G. F., Szakal, A. K. & Tew, J. G. Expression of the intercellular adhesion molecule-1 on high endothelial venules and on non-lymphoid antigen handling cells: interdigitating cells, antigen transporting cells and follicular dendritic cells. Cell Tissue Res. 279, 47–54 (1995).

    Article  CAS  PubMed  Google Scholar 

  69. Szabo, M. C., Butcher, E. C. & McEvoy, L. M. Specialization of mucosal follicular dendritic cells revealed by mucosal addressin-cell adhesion molecule-1 display. J. Immunol. 158, 5584–5588 (1997).

    CAS  PubMed  Google Scholar 

  70. Balogh, P., Aydar, Y., Tew, J. G. & Szakal, A. K. Appearance and phenotype of murine follicular dendritic cells expressing VCAM-1. Anat. Rec. 268, 160–168 (2002).

    Article  CAS  PubMed  Google Scholar 

  71. Allen, C. D. & Cyster, J. G. Follicular dendritic cell networks of primary follicles and germinal centers: phenotype and function. Semin. Immunol. 20, 14–25 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Qin, D. et al. Fc gamma receptor IIB on follicular dendritic cells regulates the B cell recall response. J. Immunol. 164, 6268–6275 (2000).

    Article  CAS  PubMed  Google Scholar 

  73. Cyster, J. G. et al. Follicular stromal cells and lymphocyte homing to follicles. Immunol. Rev. 176, 181–193 (2000).

    Article  CAS  PubMed  Google Scholar 

  74. Kapasi, Z. F. et al. Follicular dendritic cell (FDC) precursors in primary lymphoid tissues. J. Immunol. 160, 1078–1084 (1998).

    CAS  PubMed  Google Scholar 

  75. Munoz-Fernandez, R. et al. Follicular dendritic cells are related to bone marrow stromal cell progenitors and to myofibroblasts. J. Immunol. 177, 280–289 (2006).

    Article  CAS  PubMed  Google Scholar 

  76. Bachmann, M. F., Odermatt, B., Hengartner, H. & Zinkernagel, R. M. Induction of long-lived germinal centers associated with persisting antigen after viral infection. J. Exp. Med. 183, 2259–2269 (1996).

    Article  CAS  PubMed  Google Scholar 

  77. Kundig, T. M. et al. On T cell memory: arguments for antigen dependence. Immunol. Rev. 150, 63–90 (1996).

    Article  CAS  PubMed  Google Scholar 

  78. Katakai, T. et al. A novel reticular stromal structure in lymph node cortex: an immuno-platform for interactions among dendritic cells, T cells and B cells. Int. Immunol. 16, 1133–1142 (2004).

    Article  CAS  PubMed  Google Scholar 

  79. Sixt, M. et al. The conduit system transports soluble antigens from the afferent lymph to resident dendritic cells in the T cell area of the lymph node. Immunity 22, 19–29 (2005).

    Article  CAS  PubMed  Google Scholar 

  80. Luther, S. A., Tang, H. L., Hyman, P. L., Farr, A. G. & Cyster, J. G. Coexpression of the chemokines ELC and SLC by T zone stromal cells and deletion of the ELC gene in the plt/plt mouse. Proc. Natl Acad. Sci. USA. 97, 12694–12699 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Okada, T. & Cyster, J. G. CC chemokine receptor 7 contributes to Gi-dependent T cell motility in the lymph node. J. Immunol. 178, 2973–2978 (2007).

    Article  CAS  PubMed  Google Scholar 

  82. Link, A. et al. Fibroblastic reticular cells in lymph nodes regulate the homeostasis of naive T cells. Nature Immunol. 8, 1255–1265 (2007). This paper shows IL-7-expressing stromal cells in SLOs.

    Article  CAS  Google Scholar 

  83. Forster, R., Davalos-Misslitz, A. C. & Rot, A. CCR7 and its ligands: balancing immunity and tolerance. Nature Rev. Immunol. 8, 362–371 (2008).

    Article  CAS  Google Scholar 

  84. Gretz, J. E., Kaldjian, E. P., Anderson, A. O. & Shaw, S. Sophisticated strategies for information encounter in the lymph node: the reticular network as a conduit of soluble information and a highway for cell traffic. J. Immunol. 157, 495–499 (1996).

    CAS  PubMed  Google Scholar 

  85. Balogh, P., Aydar, Y., Tew, J. G. & Szakal, A. K. Appearance and phenotype of murine follicular dendritic cells expressing VCAM-1. Anat. Rec. 268, 160–168 (2002).

    Article  CAS  PubMed  Google Scholar 

  86. Roozendaal, R., Mebius, R. E. & Kraal, G. The conduit system of the lymph node. Int. Immunol. 20, 1483–1487 (2008).

    Article  CAS  PubMed  Google Scholar 

  87. McCuskey, R. S. Morphological mechanisms for regulating blood flow through hepatic sinusoids. Liver 20, 3–7 (2000).

    Article  CAS  PubMed  Google Scholar 

  88. MacLennan, I. C. Germinal centers. Annu. Rev. Immunol. 12, 117–139 (1994).

    Article  CAS  PubMed  Google Scholar 

  89. Fliedner, T. M. et al. Bone marrow structure and its possible significance for hematopoietic cell renewal. Ann. NY Acad. Sci. 459, 73–84 (1985).

    Article  CAS  PubMed  Google Scholar 

  90. Kondrack, R. M. et al. Interleukin 7 regulates the survival and generation of memory CD4 cells. J. Exp. Med. 198, 1797–1806 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Li, J., Huston, G. & Swain, S. L. IL-7 promotes the transition of CD4 effectors to persistent memory cells. J. Exp. Med. 198, 1807–1815 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. McKinstry, K. K. et al. Rapid default transition of CD4 T cell effectors to functional memory cells. J. Exp. Med. 204, 2199–2211 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Surh, C. D. & Sprent, J. Homeostasis of naive and memory T cells. Immunity 29, 848–862 (2008).

    Article  CAS  PubMed  Google Scholar 

  94. Hargreaves, D. C. et al. A coordinated change in chemokine responsiveness guides plasma cell movements. J. Exp. Med. 194, 45–56 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Hauser, A. E. et al. Chemotactic responsiveness toward ligands for CXCR3 and CXCR4 is regulated on plasma blasts during the time course of a memory immune response. J. Immunol. 169, 1277–1282 (2002).

    Article  CAS  PubMed  Google Scholar 

  96. Mamani-Matsuda, M. et al. The human spleen is a major reservoir for long-lived vaccinia virus-specific memory B cells. Blood 111, 4653–4659 (2008). This study shows that memory B cells reside in the spleen.

    Article  CAS  PubMed  Google Scholar 

  97. Martinez-Gamboa, L. et al. Role of the spleen in peripheral memory B-cell homeostasis in patients with autoimmune thrombocytopenia purpura. Clin. Immunol. 130, 199–212 (2009).

    Article  CAS  PubMed  Google Scholar 

  98. Dogan, I. et al. Multiple layers of B cell memory with different effector functions. Nature Immunol. 10, 1292–1299 (2009).

    Article  CAS  Google Scholar 

  99. Nossal, G. J., Szenberg, A., Ada, G. L. & Austin, C. M. Single cell studies on 19s antibody production. J. Exp. Med. 119, 485–502 (1964).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Cassese, G. et al. Inflamed kidneys of NZB / W mice are a major site for the homeostasis of plasma cells. Eur. J. Immunol. 31, 2726–2732 (2001).

    Article  CAS  PubMed  Google Scholar 

  101. Benson, M. J. et al. The dependence of plasma cells and independence of memory B cells on BAFF and APRIL. J. Immunol. 180, 3655–3659 (2008).

    Article  CAS  PubMed  Google Scholar 

  102. Cassese, G. et al. Plasma cell survival is mediated by synergistic effects of cytokines and adhesion-dependent signals. J. Immunol. 171, 1684–1690 (2003).

    Article  CAS  PubMed  Google Scholar 

  103. Seddon, B., Legname, G., Tomlinson, P. & Zamoyska, R. Long-term survival but impaired homeostatic proliferation of naive T cells in the absence of p56lck. Science 290, 127–131 (2000).

    Article  CAS  PubMed  Google Scholar 

  104. Boyman, O., Letourneau, S., Krieg, C. & Sprent, J. Homeostatic proliferation and survival of naive and memory T cells. Eur. J. Immunol. 39, 2088–2094 (2009).

    Article  CAS  PubMed  Google Scholar 

  105. Seddon, B., Tomlinson, P. & Zamoyska, R. Interleukin 7 and T cell receptor signals regulate homeostasis of CD4 memory cells. Nature Immunol. 4, 680–686 (2003).

    Article  CAS  Google Scholar 

  106. Hataye, J., Moon, J. J., Khoruts, A., Reilly, C. & Jenkins, M. K. Naive and memory CD4+ T cell survival controlled by clonal abundance. Science 312, 114–116 (2006). This paper shows that the pool size of memory CD4+ T H cells is regulated by clonal abundance and suggests the existence of specific survival niches in the body.

    Article  CAS  PubMed  Google Scholar 

  107. Tomayko, M. M. et al. Systematic comparison of gene expression between murine memory and naive B cells demonstrates that memory B cells have unique signaling capabilities. J. Immunol. 181, 27–38 (2008).

    Article  CAS  PubMed  Google Scholar 

  108. Becker, T. C., Coley, S. M., Wherry, E. J. & Ahmed, R. Bone marrow is a preferred site for homeostatic proliferation of memory CD8 T cells. J. Immunol. 174, 1269–1273 (2005).

    Article  CAS  PubMed  Google Scholar 

  109. Mazo, I. B. et al. Bone marrow is a major reservoir and site of recruitment for central memory CD8+ T cells. Immunity 22, 259–270 (2005). References 108 and 109 shows that memory CD8+ T cells preferentially reside in the bone marrow.

    Article  CAS  PubMed  Google Scholar 

  110. MacLennan, I. C. et al. Extrafollicular antibody responses. Immunol. Rev. 194, 8–18 (2003).

    Article  CAS  PubMed  Google Scholar 

  111. Haaijman, J. J., Schuit, H. R. & Hijmans, W. Immunoglobulin-containing cells in different lymphoid organs of the CBA mouse during its life-span. Immunology 32, 427–434 (1977).

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Terstappen, L. W., Johnsen, S., Segers-Nolten, I. M. & Loken, M. R. Identification and characterization of plasma cells in normal human bone marrow by high-resolution flow cytometry. Blood 76, 1739–1747 (1990).

    CAS  PubMed  Google Scholar 

  113. Suematsu, S. et al. IgG1 plasmacytosis in interleukin 6 transgenic mice. Proc. Natl Acad. Sci. USA. 86, 7547–7551 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Jego, G. et al. Reactive plasmacytoses are expansions of plasmablasts retaining the capacity to differentiate into plasma cells. Blood 94, 701–712 (1999).

    CAS  PubMed  Google Scholar 

  115. Sykes, M. & Nikolic, B. Treatment of severe autoimmune disease by stem-cell transplantation. Nature 435, 620–627 (2005).

    Article  CAS  PubMed  Google Scholar 

  116. Alexander, T. et al. Depletion of autoreactive immunologic memory followed by autologous hematopoietic stem cell transplantation in patients with refractory SLE induces long-term remission through de novo generation of a juvenile and tolerant immune system. Blood 113, 214–223 (2009).

    Article  CAS  PubMed  Google Scholar 

  117. Podojil, J. R., Turley, D. M. & Miller, S. D. Therapeutic blockade of T-cell antigen receptor signal transduction and costimulation in autoimmune disease. Adv. Exp. Med. Biol. 640, 234–251 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Niesner, U. et al. Autoregulation of Th1-mediated inflammation by twist1. J. Exp. Med. 205, 1889–1901 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank S. Zehentmeier, A. Hanazawa, H.-D. Chang, T. Doerner, A. Hegazy, F. Hiepe and M. Löhning for valuable discussions. This work was supported by grants: SFB 421, SFB 633 and SFB 650 of the German Research Foundation (DFG). K.T. was a research fellow of the Alexander von Humboldt foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Radbruch.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

FURTHER INFORMATION

Deutsches Rheuma-Forschungzentrum (DRFZ), A Leibniz Institute homepage

Glossary

Stromal cells

Cells of non-lymphoid origin that form the framework of each organ. These cells can support adhesion, proliferation and survival of distinct cell subsets.

Central tolerance

Tolerance to self that is created at the level of the central lymphoid organs. Developing T cells (in the thymus), and B cells (in the bone marrow) that strongly recognize self antigen face deletion or marked suppression.

Follicular dendritic cell

A cell type that is normally found only in the germinal centres of lymphoid tissue. It presents antigen to selected B cells and provides survival signals required for affinity maturation.

Memory B cell

An antigen-experienced B cell that expresses high-affinity antibodies and quickly differentiates into a plasma cell in antigen recall responses.

Plasma cell

A terminally differentiated quiescent B cell that develops from a plasmablast and is characterized by an ability to secrete large amounts of antibody.

Sinusoid

A specialized blood vessel in haematopoietic tissues through which venous circulation occurs. It has thin walls formed by a discontinuous, irregularly shaped endothelium that allows cells to pass in and out of circulation.

Germinal centre

A lymphoid structure that arises within follicles after immunization with, or exposure to, a T cell-dependent antigen. It is specialized for facilitating the development of high-affinity, long-lived plasma cells and memory B cells.

High endothelial venule

A specialized venule that occurs in secondary lymphoid organs, except the spleen. High endothelial venules allow continuous transmigration of lymphocytes as a consequence of the constitutive expression of adhesion molecules and chemokines their luminal surface.

Plasmablast

A dividing antibody-secreting cell of the B cell lineage that has migratory potential. These cells can further mature into plasma cells, which do not divide.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tokoyoda, K., Hauser, A., Nakayama, T. et al. Organization of immunological memory by bone marrow stroma. Nat Rev Immunol 10, 193–200 (2010). https://doi.org/10.1038/nri2727

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nri2727

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing