Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter January 13, 2006

The PAK1 autoregulatory domain is required for interaction with NIK in Helicobacter pylori-induced NF-κB activation

  • Manfred Neumann , Anna Foryst-Ludwig , Stefanie Klar , Katrin Schweitzer and Michael Naumann
From the journal Biological Chemistry

Abstract

Helicobacter pylori, the etiological agent of various human gastric diseases, induces the transcription factor nuclear factor κB (NF-κB) and proinflammatory cytokines/chemokines. We have characterised the direct interaction between p21-activated kinase 1 (PAK1) and NF-κB-inducing kinase (NIK) in H. pylori-infected epithelial cells. The dimerisation (DI) motif, which is part of the NH2-terminal autoregulatory domain of PAK1, is critical for this interaction, whereas NIK forms complexes with PAK1 through its carboxy-terminal IκB kinase α (IKKα) binding site. Since the identified interaction sites are also crucial for the binding of activator (Rac/Cdc42 in the case of PAK1) or effector molecules (IKKα in the case of NIK), sequential stepwise signalling is suggested. Furthermore, we show that mitogen-activated protein kinase kinase kinases (MAP3K), like TPL2 (tumour progression locus 2) and transforming growth factor β-activated kinase 1 (TAK1), have no impact on H. pylori-induced activation of NF-κB. These results identify the roles of PAK1 and NIK in a unique pathway involved in H. pylori-induced NF-κB activation, which is crucial for the induction of the innate immune response.

:

Corresponding author

References

Bagrodia, S. and Cerione, R.A. (1999). Pak to the future. Trends Cell Biol.9, 350–355.10.1016/S0962-8924(99)01618-9Search in Google Scholar

Bagrodia, S., Derijard, B., Davis, R.J., and Cerione, R.A. (1995). Cdc42 and PAK-mediated signaling leads to Jun kinase and p38 mitogen-activated protein kinase activation. J. Biol. Chem.270, 27995–27998.10.1074/jbc.270.47.27995Search in Google Scholar

Balasenthil, S., Sahin, A.A., Barnes, C.J., Wang, R.A., Pestell, R.G., Vadlamudi, R.K., and Kumar, R. (2004). p21-activated kinase-1 signaling mediates cyclin D1 expression in mammary epithelial and cancer cells. J. Biol. Chem.279, 1422–1428.10.1074/jbc.M309937200Search in Google Scholar

Brown, J.L., Stowers, L., Baer, M., Trejo, J., Coughlin, S., and Chant, J. (1996). Human Ste20 homologue hPAK1 links GTPases to the JNK MAP kinase pathway. Curr. Biol.6, 598–605.10.1016/S0960-9822(02)00546-8Search in Google Scholar

Chong, C., Tan, L., Lim, L., and Manser, E. (2001). The mechanism of PAK activation. Autophosphorylation events in both regulatory and kinase domains control activity. J. Biol. Chem.276, 17347–17353.10.1074/jbc.M009316200Search in Google Scholar

Collins, L.R., Minden, A., Karin, M., and Brown, J.H. (1996). Gα12 stimulates c-Jun NH2-terminal kinase through the small G proteins Ras and Rac. J. Biol. Chem.271, 17349–17353.10.1074/jbc.271.29.17349Search in Google Scholar

Covacci, A., Telford, J.L., Del Giudice, G., Parsonnet, J., and Rappuoli, R. (1999). Helicobacter pylori virulence and genetic geography. Science284, 1328–1333.10.1126/science.284.5418.1328Search in Google Scholar

Dadke, D., Fryer, B.H., Golemis, E.A., and Field, J. (2004). Activation of p21-activated kinase 1-nuclear factor κB signaling by Kaposi's sarcoma-associated herpes virus G protein-coupled receptor during cellular transformation. Cancer Res.63, 8837–8847.Search in Google Scholar

Foryst-Ludwig, A. and Naumann, M. (2000). p21-activated kinase 1 activates the nuclear factor κB (NF-κB)-inducing kinase-IκB kinases NF-κB pathway and proinflammatory cytokines in Helicobacter pylori infection. J. Biol. Chem.275, 39779–39785.10.1074/jbc.M007617200Search in Google Scholar

Frost, J.A., Swantek, J.L., Stippec, S., Yin, M.J., Gaynor, R., and Cobb, M.H. (2000). Stimulation of NF-κB activity by multiple signaling pathways requires PAK1. J. Biol. Chem.275, 19693–19699.10.1074/jbc.M909860199Search in Google Scholar

Ghosh, S. and Karin, M. (2002). Missing pieces in the NF-κB puzzle. Cell109, 81–86.10.1016/S0092-8674(02)00703-1Search in Google Scholar

Hehner, S.P., Hofmann, T.G., Ushmorov, A., Dienz, O., Leung, I.W., Lassam, N., Scheidereit, C., Dröge, W., and Schmitz, M.L. (2000). Mixed-lineage kinase 3 delivers CD3/CD28-derived signals into the IκB kinase complex. Mol. Cell. Biol.20, 2556–2568.10.1128/MCB.20.7.2556-2568.2000Search in Google Scholar

Hoffman, G.R. and Cerione, R.A. (2000). Flipping the switch: the structural basis for signaling through the CRIB motif. Cell102, 403–406.10.1016/S0092-8674(00)00045-3Search in Google Scholar

Ing, Y.L., Leung, I.W., Heng, H.H., Tsui, L.C., and Lassam, N.J. (1994). MLK-3: identification of a widely-expressed protein kinase bearing an SH3 domain and a leucine zipper-basic region domain. Oncogene9, 1745–1750.Search in Google Scholar

Jaffer, Z.M. and Chernoff, J. (2002). p21-activated kinases: three more join the Pak. Int. J. Biochem. Cell Biol.34, 713–717.10.1016/S1357-2725(01)00158-3Search in Google Scholar

Karin, M. and Ben-Neriah, Y. (2000). Phosphorylation meets ubiquitination: the control of NF-κB activity. Annu. Rev. Immunol.18, 621–663.10.1146/annurev.immunol.18.1.621Search in Google Scholar

King, A.J., Sun, H., Diaz, B., Barnard, D., Miao, W., Bagrodia, S., and Marshall, M.S. (1998). The protein kinase Pak3 positively regulates Raf-1 activity through phosphorylation of serine 338. Nature396, 180–183.10.1038/24184Search in Google Scholar

Kissil, J.L., Wilker, E.W., Johnson, K.C., Eckman, M.S., Yaffe, M.B., and Jacks, T. (2003). Merlin, the product of the Nf2 tumor suppressor gene, is an inhibitor of the p21-activated kinase, Pak. Mol. Cell12, 841–849.10.1016/S1097-2765(03)00382-4Search in Google Scholar

Ku, G.M., Yablonski, D., Manser, E., Lim, L., and Weiss, A. (2001). A PAK1-PIX-PKL complex is activated by the T-cell receptor independent of Nck, Slp-76 and LAT. EMBO J.20, 457–465.10.1093/emboj/20.3.457Search in Google Scholar

Lee, F.S., Peters, R.T., Dang, L.C., and Maniatis, T. (1998). MEKK1 activates both IκB kinase α and IκB kinase β. Proc. Natl. Acad. Sci. USA95, 9319–9324.10.1073/pnas.95.16.9319Search in Google Scholar

Lei, M., Lu, W., Meng, W., Parrini, M.-C., Eck, M.J., Mayer, B.J., and Harrison, S.C. (2000). Structure of PAK1 in an autoinhibited conformation reveals a multistage activation switch. Cell102, 387–397.10.1016/S0092-8674(00)00043-XSearch in Google Scholar

Li, Q. and Verma, I. (2002). NF-κB regulation in the immune system. Nat. Rev. Immunol.2, 725–734.10.1038/nri910Search in Google Scholar PubMed

Lin, X., Cunningham, E.T., Mu, Y., Geleziunas, R., and Greene, W.C. (1999). The proto-oncogene Cot kinase participates in CD3/CD28 induction of NF-κB acting through the NF-κB-inducing kinase and IκB kinases. Immunity10, 271–280.10.1016/S1074-7613(00)80027-8Search in Google Scholar

Ling, L., Cao, Z., and Goeddel, D.V. (1998). NF-κB-inducing kinase activates IKK-α by phosphorylation of Ser-176. Proc. Natl. Acad. Sci. USA95, 3792–3797.10.1073/pnas.95.7.3792Search in Google Scholar PubMed PubMed Central

Malinin, N.L., Boldin, M.P., Kovalenko, A.V., and Wallach, D. (1997). MAP3K-related kinase involved in NF-κB induction by TNF, CD95 and IL-1. Nature385, 540–544.10.1038/385540a0Search in Google Scholar PubMed

Nakano, H., Shindo, M., Sakon, S., Nishinaka, S., Mihara, M., Yagita, H., and Okumura, K. (1998). Differential regulation of IκB kinase α and β by two upstream kinases, NF-κB-inducing kinase and mitogen-activated protein kinase/ERK kinase kinase-1. Proc. Natl. Acad. Sci. USA95, 3537–3542.10.1073/pnas.95.7.3537Search in Google Scholar PubMed PubMed Central

Naumann, M. (2005). Pathogenicity island-dependent effects of Helicobacter pylori on intracellular signal transduction in epithelial cells. Int. J. Med. Microbiol.295, 335–341.10.1016/j.ijmm.2005.06.007Search in Google Scholar PubMed

Naumann, M. and Crabtree, J.E. (2004). Helicobacter pylori-induced epithelial cell signalling in gastric carcinogenesis. Trends Microbiol.12, 29–36.10.1016/j.tim.2003.11.005Search in Google Scholar PubMed

Naumann, M. and Scheidereit, C. (1994). Activation of NF-κB in vivo is regulated by multiple phosphorylations. EMBO J.13, 4597–4607.10.1002/j.1460-2075.1994.tb06781.xSearch in Google Scholar PubMed PubMed Central

Nemoto, S., DiDonato, J.A., and Lin, A. (1998). Coordinate regulation of IκB kinases by mitogen-activated protein kinase kinase kinase 1 and NF-κB-inducing kinase. Mol. Cell. Biol.18, 7336–7343.10.1128/MCB.18.12.7336Search in Google Scholar PubMed PubMed Central

Ninomiya-Tsuji, J., Kishimoto, K., Hiyama, A., Inoue, J., Cao, Z., and Matsumoto, K. (1999). The kinase TAK1 can activate the NIK-I κB as well as the MAP kinase cascade in the IL-1 signalling pathway. Nature398, 252–256.10.1038/18465Search in Google Scholar PubMed

Tuazon, P.T., Spanos, W.C., Gump, E.L., Monnig, C.A., and Traugh, L.A. (1997). Determinants for substrate phosphorylation by p21-activated protein kinase (γ-PAK). Biochem. J.36, 16059–16064.10.1021/bi9717845Search in Google Scholar PubMed

Viala, J., Chaput, C., Boneca, I.G., Cardona, A., Girardin, S.E., Moran, A.P., Athman, R., Memet, S., Huerre, M.R., Coyle, A.J., et al. (2004). Nod1 responds to peptidoglycan delivered by the Helicobacter pylori cag pathogenicity island. Nat. Immunol.5, 1166–1174.10.1038/ni1131Search in Google Scholar PubMed

Zhang, S., Huan, J., Sells, M.A., Chernoff, J., Knaus, U.G., Ulevitch, R.J., and Bokoch, G.M. (1995). Rho family GTPases regulate p38 mitogen-activated protein kinase through the downstream mediator Pak1. J. Biol. Chem.270, 23934–23936.10.1074/jbc.270.41.23934Search in Google Scholar PubMed

Published Online: 2006-01-13
Published in Print: 2006-01-01

©2006 by Walter de Gruyter Berlin New York

Downloaded on 28.4.2024 from https://www.degruyter.com/document/doi/10.1515/BC.2006.011/html
Scroll to top button