Skip to main content
Log in

Clinical Pharmacokinetics of Tegaserod, a Serotonin 5-HT4 Receptor Partial Agonist with Promotile Activity

  • Review Articles
  • Drug Disposition
  • Published:
Clinical Pharmacokinetics Aims and scope Submit manuscript

Abstract

Tegaserod, a selective serotonin (5-hydroxytryptamine; 5-HT) 5-HT4 receptor partial agonist, is indicated in patients with irritable bowel syndrome (IBS) who identify abdominal pain or discomfort and constipation as their predominant symptoms. Tegaserod at dosages of 1 to 12 mg/day exerts pharmacodynamic actions in the upper and the lower gastrointestinal tract, accelerating small bowel and colonic transit in patients with IBS.

Tegaserod is rapidly absorbed following oral administration; peak plasma concentrations (Cmax) are reached after approximately 1 hour. Absolute bioavailability is about 10% under fasted conditions. Food reduces the bioavailability of tegaserod by 40 to 65% and the Cmax by 20 to 40%. Systemic exposure to tegaserod is not significantly altered at neutral gastric pH compared with the fasted state (pH 2). Tegaserod is approximately 98% bound to plasma proteins, primarily to (α1-acid glycoprotein, and has a volume of distribution at steady-state of 368 ± 223L.

Tegaserod is metabolised mainly via two pathways. The first is a presystemic acid-catalysed hydrolysis in the stomach followed by oxidation and conjugation which produces the main metabolite of tegaserod, 5-methoxyindole-3-carboxylic acid glucuronide (M 29.0). This metabolite has negligible affinity for 5-HT4 receptors and is devoid of promotile activity. The second is direct glucuronidation which leads to generation of three isomeric N-glucuronides. The plasma clearance of tegaserod is 77 ± 15 L/h, with an estimated terminal half-life of 11 ± 5 hours following intravenous administration. Approximately two-thirds of the orally administered dose of tegaserod is excreted unchanged in faeces, with the remainder excreted in urine, primarily as M 29.0. The pharmacokinetics of tegaserod are dose-proportional over the range 2 to 12mg given twice daily for 5 days, with no relevant accumulation.

The pharmacokinetics of tegaserod in patients with IBS are comparable to those in healthy individuals, and similar between men and women. No dosage adjustment is required in elderly patients or those with mild to moderate hepatic or renal impairment. Tegaserod should not be used in patients with severe hepatic or renal impairment.

No clinically relevant drug-drug interactions with tegaserod have been identified. In vivo drug-drug interaction studies with theophylline [a cytochrome P450 (CYP) 1A2 prototype substrate], dextromethorphan (a CYP2D6 prototype substrate), digoxin, warfarin and oral contraceptives have indicated no clinically relevant interactions and no requirement for dosage adjustment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Table I
Table II
Table III
Table IV
Fig. 3
Table V
Table VI
Fig. 4
Table VII
Fig. 5
Table VIII
Fig. 6
Table IX
Fig. 7
Fig. 8
Table X
Table XI

Similar content being viewed by others

Notes

  1. Use of tradenames is for product identification only and does not imply endorsement.

References

  1. Drossman DA. An integrated approach to the irritable bowel syndrome. Aliment Pharmacol Ther 1999; 13: 3–14

    Article  PubMed  Google Scholar 

  2. Drossman DA, Whitehead WE, Camilleri M. Irritable bowel syndrome: a technical review for practice guideline development. Gastroenterology 1997; 112: 2120–37

    Article  PubMed  CAS  Google Scholar 

  3. Drossman DA, Thompson WG, Talley NJ, et al. Identification of sub-groups of functional gastro-intestinal disorders. Gas-troenterol Int 1990; 3: 159–72

    Google Scholar 

  4. Thompson WG, Longstreth GF, Drossman DA, et al. Functional bowel disorders and functional abdominal pain. Gut 1999; 45 Suppl. II: 43–7

    Google Scholar 

  5. Talley NJ. 5-Hydroxytryptamine agonists and antagonists in the modulation of gastrointestinal motility and sensation: clinical implications. Aliment Pharmacol Ther 1992; 6: 273–89

    Article  PubMed  CAS  Google Scholar 

  6. Drossman DA, Li Z, Andruzzi E, et al. US householder survey of functional gastrointestinal disorders. Dig Dis Sci 1993; 38: 1569–80

    Article  PubMed  CAS  Google Scholar 

  7. Talley NJ, Gabriel SE, Harmsen WS, et al. Medical costs in community subjects with irritable bowel syndrome. Gastro-enterology 1995; 109: 1736–41

    Article  CAS  Google Scholar 

  8. Hahn BA, Yan S, Strasseis S. Impact of irritable bowel syndrome on quality of life and resource use in the United States and United Kingdom. Digestion 1999; 60: 77–81

    Article  PubMed  CAS  Google Scholar 

  9. Scott LJ, Perry CM. Tegaserod. Drugs 1999; 58: 491–6

    Article  PubMed  CAS  Google Scholar 

  10. Graul A, Silvestre J, Castaner J. Tegaserod maleate. Drugs Future 1999; 24: 38–44

    Article  CAS  Google Scholar 

  11. Norman P. Zelmac. IDrugs 1999; 2: 265–9

    PubMed  CAS  Google Scholar 

  12. Hoyer D, Clarke DE, Fozard JR, et al. VII International Union of Pharmacology. Classification of receptors for 5-hydroxy-tryptamine (serotonin). Pharmacol Rev 1994; 46: 157–203

    PubMed  CAS  Google Scholar 

  13. Blondel O, Gastineau M, Dahmoune Y, et al. Cloning, expression, and pharmacology of four human 5-hydroxytrypt-amine4 receptor isoforms produced by alternative splicing in the carboxyl terminus. J Neurochem 1998; 70: 2252–61

    Article  PubMed  CAS  Google Scholar 

  14. Claeysen S, Faye P, Sebben M, et al. 5-HT4 receptors: cloning and expression of new splice variants. Ann N Y Acad Sci 1998; 861: 49–56

    Article  PubMed  CAS  Google Scholar 

  15. Bender E, Pindon A, Van Oers I, et al. Structure of the human serotonin 5-HT4 receptor gene and cloning of a novel 5-HT4 splice variant. J Neurochem 2000; 74: 478–89

    Article  PubMed  CAS  Google Scholar 

  16. Hegde SS, Eglen RM. Peripheral 5-HT4 receptors. FASEB J 1996; 10: 1398–407

    PubMed  CAS  Google Scholar 

  17. Pfannkuche HJ, Buhl T, Gamse R, et al. The properties of a new prokinetically active drug, SDZ HTF 919 [abstract]. Neuro Gastroenterology Motil 1995; 7: 280

    Google Scholar 

  18. Sanger GJ, Wardle KA, Shapcott S, et al. In: Fozard JR, Saxena PR, editors. Serotonin: molecular biology, receptors and functional effects. Basel: Birkhäuser Verlag, 1991: 381–8

  19. Sowers JR, Sharp B, McCallum RW. Effect of domperidone, an extracerebral inhibitor of dopamine receptors, on thy-reotropin, prolactin, renin, aldosteron and 18-hydroxy-cortisone secretion in man. Endocrinol Metab 1982; 54: 869–71

    Article  CAS  Google Scholar 

  20. Hoyer D, Fehlmann D, Langenegger D, et al. High affinity of SDZ HTF 919 and related molecules for calf and human caudate 5-HT4 receptors. Ann N Y Acad Sci 1998; 861: 267–8

    Article  PubMed  CAS  Google Scholar 

  21. Grider JR, Foxx-Orenstein AE, Jin JG. 5-Hydroxytryptamine4 receptor agonists initiate the peristaltic reflex in human, rat, and guinea pig intestine. Gastroenterology 1998; 115: 370–80

    Article  PubMed  CAS  Google Scholar 

  22. Jin JG, Foxx-Orenstein AE, Grider JR. Propulsion in guinea pig colon induced by 5-hydroxytryptamine (HT) via 5-HT4 and 5-HT3 receptors. J Pharmacol Exp Ther 1999; 288: 93–7

    PubMed  CAS  Google Scholar 

  23. Nguyen A, Camilleri M, Kost LJ, et al. SDZ HTF 919 stimulates canine colonic motility and transit in vivo. J Pharmacol Exp Ther 1997; 280: 1270–6

    PubMed  CAS  Google Scholar 

  24. Stoner MC, Arcuni JC, Lee J, et al. A selective 5-HT4 receptor agonist induces cAMP-mediated Cl efflux from rat colonocytes [abstract]. Gastroenterology 1999; 116: A648

    Google Scholar 

  25. Schikowski A, Mathis C, Thewissen M, et al. Dose-dependent modulation of rectal afferent sensitivity by a 5HT4 receptor agonist [abstract]. Gastroenterology 1999; 116: A643

    Article  Google Scholar 

  26. Coelho AM, Rovira P, Fioramonti J, et al. Antinociceptive properties of HTF 919 (tegaserod), a 5-HT4 receptor partial agonist, on colorectal distension in rats [abstract]. Gastroenterology 2000, 118: A835

    Article  Google Scholar 

  27. Kaumann AJ. Do human atrial 5-HT4 receptors mediate arrhythmia? Trends Pharmacol Sci 1994; 15: 451–5

    Article  PubMed  CAS  Google Scholar 

  28. Tonini M, Candura SM. 5-HT4 receptor agonists and bladder disorders. Trends Pharmacol Sci 1996; 17: 314–6

    PubMed  CAS  Google Scholar 

  29. Lefebvre H, Contesse V, Delarue C, et al. Serotonergic regulation of adrenocortical function. Horm Metab Res 1998; 30: 398–403

    Article  PubMed  CAS  Google Scholar 

  30. Bockaert J, Fagni L, Dumuis A. 5-HT4 receptors: an update. Serotoninergic neurons and 5-HT receptors in the CNS. In: Baumgarten HH, Göthert M, editors. Handbook of experimental pharmacology. Berlin and Heidelberg: Springer-Verlag, 1997: 439–74

    Google Scholar 

  31. Drici M, Ebert SN, Wang WX, et al. Comparison of tegaserod (HTF 919) and its main human metabolite with cisapride and erythromycin on cardiac repolarization in the isolated rabbit heart. J Cardiovascular Pharmacol 1999; 34: 82–8

    Article  CAS  Google Scholar 

  32. Briner U, Pless J. Effects of SDZ 216-919 on different endocrine parameters in male rats [data on file]. Document 103-186. Basel, Switzerland: Novartis Pharma AG, 1994

    Google Scholar 

  33. Briner U, Pless J. Effects of SDZ 216-919 on prolactin secretion in male rats [data on file]. Document 103-187. Basel, Switzerland: Novartis Pharma AG, 1994

    Google Scholar 

  34. Appel S, Kumle A, Hubert M, et al. First pharmacokinetic-phar-macodynamic study in humans with a selective 5-hydroxy-tryptamine4 receptor agonist. J Clin Pharmacol 1997; 37: 229–37

    PubMed  CAS  Google Scholar 

  35. Appel-Dingemanse S, Lemaréchal M-O, Kumle A, et al. Integrated modelling of the clinical pharmacokinetics of SDZ HTF 919, anovel selective 5-HT4 receptor agonist, following oral and intravenous administration. Br J Clin Pharmacol 1999; 47: 483–91

    Article  PubMed  CAS  Google Scholar 

  36. Hubert M. Determination of HTF 919 in human plasma by high performance liquid chromatography with ultra-violet detection [data on file]. DMPK (F) R98-086. Rueil-Malmaison, France: Novartis Pharma SA, 1999

    Google Scholar 

  37. Hubert M. Determination of HTF 919 acid-glucuronide in plasma by gas chromatography-mass spectrometry [data on file]. DMPK (F) R98-054. Rueil-Malmaison, France: Novartis Pharma SA, 1999

    Google Scholar 

  38. Dannecker R, Appel S, Hubert M, et al. Evaluation of the absorption, distribution, metabolism, and excretion of [14C]-SDZ HTF 919 following a single-dose oral administration in healthy male subjects [data on file]. Document 303-236. Basel, Switzerland: Novartis Pharma AG, 1997

    Google Scholar 

  39. Vickers AEM, Zollinger M, Dannecker R, et al. In vitro metabolism of tegaserod in human liver and intestine: assessment of drug interactions. Drug Metab Dispos 2001; 29_(10): 1269–76

    Google Scholar 

  40. Andres H. Labelling of tegaserod (HTF 919) with stable and radioactive isotopes. 8th Conference of the International Isotope Society; 1999 June 10–11; Bad Soden, Germany

  41. Zollinger M. SDZ HTF 919: structural characterization of metabolites in rat and human by liquid chromatography-mass spectrometry [data on file]. Document 303-224. Basel, Switzerland: Novartis Pharma AG, 1996

    Google Scholar 

  42. Müller-Lissner SA, Fumagalli I, Bardhan KD, et al. Tegaserod, a 5-HT4 receptor partial agonist, relieves symptoms in irritable bowel syndrome patients with abdominal pain, bloating and constipation. Aliment Pharmacol Ther 2001; 15(10): 1655–66

    Article  PubMed  Google Scholar 

  43. Appel-Dingemanse S, Hirschberg Y, Osborne S, et al. Multiple-dose pharmacokinetics confirm no accumulation and dose proportionality of the novel promotile drug tegaserod HTF 919 (Zelmac®). Eur J Clin Pharmacol 2001; 56: 889–91

    Article  PubMed  CAS  Google Scholar 

  44. Degen L, Matzinger D, Merz M, et al. Tegaserod, a 5-HT4 receptor partial agonist, accelerates gastric emptying and gastrointestinal transit in healthy male subjects. Aliment Pharmacol Ther 2001; 15(11): 1745–51

    Article  PubMed  CAS  Google Scholar 

  45. Camenisch G. Transport studies across Caco-2 cell monolayers [data on file]. DMPK (CH) R99-1639. Basel, Switzerland: Novartis Pharma AG, 1999

    Google Scholar 

  46. Gwynne JT, Kumle A, Appel S, et al. A study investigating the food effect on the pharmacokinetics of SDZ HTF 919 given as single oral doses of 25 mg to healthy male subjects [data on file]. Document 303-221. Basel, Switzerland: Novartis Pharma AG, 1995

    Google Scholar 

  47. Zhou H, Khalilieh S, Lau H, et al. Effect of meal timing not critical for the pharmacokinetics of tegaserod (HTF 919). J Clin Pharmacol 1999; 39: 911–9

    Article  PubMed  CAS  Google Scholar 

  48. Djordjevic N. SDZ HTF 919 hml: drug substance properties in solution [data on file]. Basel, Switzerland: Novartis Pharma AG, 1994

    Google Scholar 

  49. Lemaire M. SDZ HTF 919: blood distribution and plasma protein binding [data on file]. Document 303-214. Basel, Switzerland: Novartis Pharma AG, 1995

    Google Scholar 

  50. Appel-Dingemanse S, Hubert M, Alladina L, et al. Pharmacokinetics and safety of SDZ HTF 919, a new propotile drug, in healthy subjects and patients with hepatic cirrhosis. World Congress Gastroenterology; 1998 Sep 6–11; Vienna, Austria. Digestion 1998; 59 Suppl. 3: 736–7

    Google Scholar 

  51. Zhou H, McLeod J, Alladina L, et al. Pharmacokinetics (PK) of SDZ HTF 919 (HTF) not altered in subjects with severe renal insufficiency requiring hemodialysis [abstract]. Clin Pharm Ther 1999; 65: 203

    Google Scholar 

  52. Lemaire M. SDZ HTF 919: blood-brain barrier permeability [data on file]. Document 303-205. Basel, Switzerland: Novartis Pharma AG, 1995

    Google Scholar 

  53. Fioramonti J, Million M, Bueno L. Investigations on a 5-HT4 agonist (SDZ HTF 919) and its main metabolite in conscious dogs: effects on gastrointestinal motility and impaired gastric emptying [abstract]. Gastroenterology 1998; 114: A752–(G3103)

    Article  Google Scholar 

  54. Thévenin J-P. Stability of SDZ HTF 919 in acidic solutions [data on file]. Basel, Switzerland: Novartis Pharma AG, 1992

    Google Scholar 

  55. Zhou H, Kalilieh S, Campestrini J, et al. Effect of gastric pH on plasma concentrations of tegaserod (HTF 919) and its major metabolite in healthy subjects [abstract A1206]. Gastroenterology 2000; 118: 5538

    Google Scholar 

  56. Gwynne JT, Kumle A, Appel S, et al. A study on the safety and tolerability of single rising intravenous doses of SDZ HTF 919 in healthy subjects [data on file]. Document 303-223. Basel, Switzerland: Novartis Pharma AG, 1993

    Google Scholar 

  57. Schmitt C, Krumholz S, Tanghe J, et al. Tegaserod, a partial 5-HT4 receptor agonist, improves abdominal discomfort/pain and altered bowel function in irritable bowel syndrome (IBS) [abstract]. Gut 1999; 45 Suppl. V: A258 (P0960)

    Google Scholar 

  58. Krumholz S, Tanghe J, Schmitt C, et al. The 5-HT4 partial agonist tegaserod improves abdominal bloating and altered stool consistency in irritable bowel syndrome (IBS) [abstract]. Gut 1999; 45 Suppl. V: A260 (P0965)

    Google Scholar 

  59. Appel-Dingemanse S, Rawls J, Campestrini J, et al. Similar pharmacokinetics of tegaserod (HTF 919) in patients with constipation- and diarrhea-predominant irritable bowel syndrome [abstract Al 160]. Gastroenterology 2000; 118: 5340

    Article  Google Scholar 

  60. Rawls J, Lefkowitz M, Shi Y, et al. Tegaserod is well tolerated in diarrhea-predominant irritable bowel syndrome [abstract]. Gut 2000; 47 Suppl. III: A217

    Google Scholar 

  61. Appel-Dingemanse S, Horowitz A, Campestrini J, et al. The pharmacokinetics of the novel promotile drug tegaserod are similar in healthy subjects male and female, elderly and young. Aliment Pharmacol Ther 2001; 15(7): 937–44

    Article  PubMed  CAS  Google Scholar 

  62. Osborne S. Effect of demographic characteristics (body weight, age, gender, race) on HTF 919 pharmacokinetic parameters (AUC0-∞, Cmax) [data on file]. Document BS7335. Basel, Switzerland: Novartis Pharma AG, 1999

    Google Scholar 

  63. Schweitzer A, Dannecker R. Embryo-fetal transfer in pregnant rats on day 13 and day 17 of gestation after oral administration of [14C]HTF919-hml [data on file]. DMPK (CH) R98-263 and DMPK(CH) R98-263-01. Basel, Switzerland: Novartis Pharma AG, 1999

    Google Scholar 

  64. Wiegand HJ, Schweitzer A, Dannecker R. Placental transfer of radioactive substance(s) in rabbits after peroral administration of 14C-labeled HTF919-hml [data on file]. DMPK (CH) R98-023. Basel, Switzerland: Novartis Pharma AG, 1999

    Google Scholar 

  65. Guntz P, Dannecker R, Keller B, et al. Passage of [14C]SDZ HTF 919 into rat milk after single oral administration (60mg/kg) [data on file]. Document 304-210. Basel, Switzerland: Novartis Pharma AG, 1995

    Google Scholar 

  66. Zhou H, Khalilieh S, Svendsen K, et al. Tegaserod coadmini-stration does not alter the pharmacokinetics of theophylline in healthy subjects. J Clin Pharmacol 2001; 41(9): 987–95

    Article  PubMed  CAS  Google Scholar 

  67. Kalbag J, Migoya E, Osborne S, et al. Tegaserod does not significantly affect the pharmacokinetics of dextromethorphan in healthy subjects [abstract Al 179]. Gastroenterology 2000; 118: 5422

    Article  Google Scholar 

  68. Zhou H, Horowitz A, Ledford PC, et al. The effects of tegaserod (HTF 919) on the pharmacokinetics and pharmacodynamics of digoxin in healthy subjects. J Clin Pharmacol 2001; 41(10): 1131–9

    Article  PubMed  CAS  Google Scholar 

  69. Ledford P, On N, Lingueros-Saylan M, et al. Tegaserod does not significantly affect the pharmacokinetics and pharmacodynamics of warfarin in healthy subjects [abstract A1184]. Gastroenterology 2000; 18: 5445

    Google Scholar 

  70. Zhou H, Walter Y, Hubert M, et al. Tegaserod (HTF 919) does not decrease the effectiveness of an oral contraceptive when co-administered to healthy female subjects [abstract A1207]. Gastroenterology 2000; 118: 5539

    Google Scholar 

  71. Appel S, Kumle A, Meier R. Clinical pharmacodynamics of SDZ HTF 919, a new 5-HT4 receptor agonist, in a model of slow colonic transit. Clin Pharmacol Ther 1997; 62: 546–55

    Article  PubMed  CAS  Google Scholar 

  72. Prather CM, Camilleri M, Zinsmeister AR, et al. Tegaserod accelerates orocecal transit in patients with constipation-predominant irritable bowel syndrome. Gastroenterology 2000; 118: 463–8

    Article  PubMed  CAS  Google Scholar 

  73. Morganroth J, Rüegg PC, Dunger-Baldauf C, et al. Tegaserod, a 5-HT4 receptor partial agonist is devoid of significant elec-trocardiographic side effects. Am J Gastroenterol 2002. In press

Download references

Acknowledgements

No sources of funding were used to assist in the preparation of this manuscript. The author has no conflicts of interest that are directly relevant to the content of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Silke Appel-Dingemanse.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Appel-Dingemanse, S. Clinical Pharmacokinetics of Tegaserod, a Serotonin 5-HT4 Receptor Partial Agonist with Promotile Activity. Clin Pharmacokinet 41, 1021–1042 (2002). https://doi.org/10.2165/00003088-200241130-00002

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00003088-200241130-00002

Keywords

Navigation